
DTIC
AFIT/GEOIBNG/91D-02 EET

DEC 2 6 1991U

AD-A2 4 3 625

FUNCTION PREDICTION

USING RECURRENT NEURAL NETWORKS

THESIS

Randall L. Lindsey
Captain

AFIT/GEO/ENG/91D-02

Approved for public release; distribution unlimited

91-19018Imflflfl* 91 1.224 03.7



2 T_

1 Form ApprovedREPORT DOCUMENTATION PAGE O MB No. 0704-0 188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and revieiung the oiiection of information Send comments regarding this burden estimate or any other aspect of this
tollection of intormatiori. inciuding suggestions for reducing ',his burden to ivashingtun Headquarters Services, Cirzctorate for intvw'ation Operationsand Reports. 1215 Jefferson
Davis Highwey. Suite 1204, Ailington, VA 22202-4302, and tol th Office of Maniagementand Budget, Paperwork Reduction Project (0704-0i881 Washington. DC 20503.

1AGENCY USE ONLY (Leave blank) I ce2r& 3.EPOR 11 , IIfE AND DATES COVERED

1TITLE AND SUBTITLE S . FUNDING NUMBERS
FUNCTION PREDICTION USING
RECURRENT NEURAL NETWORKS

6. AUTHOR 5

EROMNG ORGANIZATION NAME(S) AND ADDRESS(ES) 8 EFRIGOGNZTO
Air Force Institute of Technology, WPAFB OH 45433-6583REOTNMR

AFIT/GEO/ENG/91D-02

9. SPONS~ORING /MONITORING AGENCY NAME(E) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
Mike Hinman AGENCY REPORT NUMBER

RADC/IRR
Griffis AFB NY 13441

1I. SUPPLEMENTARY NOTES

12DISTRIBTION Iar e;fIAJLT S NJ ed 12b. DISTRIBUTION CODEA-pprove or Pu blcees~ ~uin unlimited

\b 3;AeBSTRACT (Ma ximum 200 words)
A fly recurrent neura network was applied to the function prediction problem. The real-time recurrent learniing

(RTRL) algorithm was modified and tested for use as a viable function predictor. The modification gave the
algorithm a variable learning rate and a linear/sigmoidal output selection. Verifying the networks ability to
temporally learn both the classic exclusive-OR (XOR) problem and the internal state problem, the network was
then used to simulate the frequency response of a second order IIR lowpass Butterworth fiter. The recurrent
network was then applied to two problems: head position tracking, and voice data reconstruction. The accuracy
at which the network predicted the pilot's head position was compared to the best linear statistical prediction
algorithm. The application of the network to the reconstruction of voice data showed the recurrent network's
ability to learn temporally encoded sequences, and make decisions as to whether or not a speech signal sample
was considered a fricative or a voiced portion of speech. iC

14. SU&JECT TERMS i BRO AE
gRecurrent Neural Networks, Real-time Recurrent Learning Algorithm, Function Pre- 11WBRO AE

diction, Recurrent Network Applications, Neural Nets, Recurrent Backpropagation 16. PRICE CODE

117. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

Unlss Unclassined Unctlaie UL

NSN 7540, 01 280-5500O Stardard EcOrm 298 (Mev 2-89)
P-i',,.r-d by -1451 ',d /19 !8



GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is Used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each bock of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Aclency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, !TAR).

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If DOD - See DoDD 5230.24, " D istrib utio n

applicable, enter inclusive report dates (e.g. 10 Statements on Technical
Jun 8 - 3 Jun88).Documents."

Jun 87-30 Jun 88). DOE - See authorities.

Bloc!: 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more than ne volume, Block 12b. Distribution Code.
repeat the primary title, add volt me number, and
include subtitle for the specific volume. On
classified documents enter the title classification DOD - Leave blank.in parentheses. DOE -Enter DOE distribution categories

from the Standard Distribution for

Block 5. Fundinq Numbers. To include contract Unclassified Scientific and Technical
and grant numbers; may include program Reports.
element number(s), project number(s), task NASA - Leave blank.
number(s), and work unit number(s). Use the NTIS - Leave blank.
following labels:

C - Contract PR - Project Block 13. Abstract- Include a brief (Maximum
G - Grant TA - Task 200 words) factual summary of the most
PE - Program WU - Work Unit significar.t,formation contained in the report.

Element Accession No.

Block 6. Author(s). Name(s) of person(s) Block 14. SubiectTerms. Keywords or phrases
responsible for writing the report, performing identifying major subjects in the report.
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). Block 1S. Numberof Pages. Enterthetotal

number of pages.
Block7. Performing Organization Name(s) and
Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organizationperforming the report. Blocks 17.- 19. Security Classifications. Self-

explanatory. Enter U.S. Security Classification in

Block 9. SponsoringMonitoring Agency Name(sl accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top and
Block 10. Sp onsorin/Monitorinqc .tcy bottom of the page.
Report Number. (if known)

Block 11. Supplementary Notes. Enter Block 20. Limitation uf Abstract. This block must
information not included elsewhere such as: be completed to assign a limitation to the
Prepafed in cooperation with..:; Trans. of.:.:.; To be abstract. Enter either UL (unlimited) or SAR (same
published in.... When a report is rev;ed, include as report). An entry in this block is necessary if
a statpment vwC,.r the r.ew report supersedes the abstract is to be limited. If blank, the abstract
or supolements the oider report. is assumed to be ur.imited.

Standazd Form 298 Back (Rev. 2-89)



AFIT/GEO/ENG/9 D-02

FUNCTION PREDICTION

USING RECURRENT NEURAL NETWORKS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Electrical Engineering Aoseaulon 7.,

L"ic TAB [

Randall L. Lindsey, B.S.E.E. j ,y

Dist ribute
Captain A *11mtlatitty Codfis

0... 1 avd/or

Dist ipacial

December, 1991

Approved for public release; distribution unlimited



Acknowledgments

The last thing I wanted to research at AFIT was any topic dealing with neural

networks. Yet, after seeing the utility of neural networks in solving many practi

applications, my view of neural network research changed drastically. Thanks to the

initiative of my thesis advisor, Capt Dennis Ruck, and the insight of my committee

members, Maj Steven Rogers and Dr Matthew Kabrisky, I was able to research the specific

area of neural networks that interested me the most: recurrent neural networks. I would

never have conceived of this research topic, let alone attempted it, without their guidance

and direction. In addition, many thanks belong to by faithful wife, Linda, whose support

and understanding kept me coming back to school with a smile on my face and a song in

my heart. Finally, it was my faith in Jesus Christ that helped me see the light at the end of

the tunnel. With this in mind, I was always able to keep a balanced perspective between

school and my family life. As important as this education is in my career, I would have

dropped it in a second if it meant compromising my faith or my family. Thank you Jesus

for giving me the strength to carry this commitment through.

Randall L. Lindsey

ii



Table of Contents

Page

Acknowledgments... .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . ...

Table of Contents.... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ....

List of Figures. .. .. .. .. .. .. .. ... .. ... .. ... ... .. .... vi

List of Tables. .. .. .. .. .. .. . .. .. . .. .. . .. . .. .. . .. .. viii

Abstract. .. .. .. .. .. .. ... .. ... .. ... .. ... .. ... .... ix

1. Introduction. .. .. .. .. .. .. . .. .. . .. .. . .. .. . .. ... I

1. 1 Problem. .. .. .. .. .. .. .. ... .. ... ... .... 2

1.2 Background. .. .. .. .. .. .. ... .. ... .. ...... 2

1.3 Assumptions .. .. .. .. .. .. .. .. ... .. ... .... 2

1.4 Scope. .. .. .. .. .. .. ... .. ... .. ... .. ... 2

1.5 Approach .. .. .. .. .. .. ... .. ... .. ... .... 3

11. Literature Review. .. .. .. .. .. .. . .. .. . .. .. . .. .. ... 4

2.1 Introduction. .. .. .. .. .. .. .. . .. .. . .. ...... 4

2.2 Background. .. .. .. .. .. .. ... .. ... .. ...... 4

2.3 Scope. .. .. .. .. .. .. ... .. ... .. ... .. ... 7

2.4 Backpropagation through time (BPT) .. .. .. .. .. ..... 7

2.5 Modified BMl. .. .. .. .. .. .. ... .. ... .. ... 9

2.6 Real-Time Recurrent Learning (RTRL) .. .. .. .. .. ..... 9

2.7 Subgrouped RTRL .. .. .. .. .. .. .. .. ... .. .... 10

2.8 Summary. .. .. .. .. .. .. .. .. .. .. ... .. ... 10

iii



Page

111. Methodology. .. .. .. .. .. ... ... .. ... .. ... .. .... 12

3.1 Introduction .. .. .. .. .. .. .. ... .. ... .. .... 12

3.2 RTIRL Algorithm. .. .. .. .. .. ... .. ... .. .... 12

3.3 Modifications. .. .. .. .. .. .. ... .. ... .. .... 16

3.4 Testing. .. .. .. .. .. .. .. .. ... .. ... .. .... 17

3.4.1 Exclusive OR. .. .. .. .. .. .. ... .. .... 17

3.4.2 Internal State. .. .. .. .. .. .. ... ... .. 21

3.4.3 Second Order IIR Lowpass Filter. .. .. .. .. ... 22

3.5 Applications .. .. .. .. .. .. .. .. ... .. ... .... 25

3.5.1 Predicting 3-D Head Position in Time .. .. .. .... 25

3.5.2 Voice Data Reconstruction. .. .. .. .. .. .... 26

3.6 Summary .. .. .. .. .. .. ... .. ... .. ... .... 28

IV. Results and Discussion. .. .. .. .. .. ... .. ... .. ... .... 29

4.1 Modifications. .. .. .. .. .. .. ... .. ... .. .... 29

4.2 Exclusive OR. .. .. .. .. .. .. ... .. ... .. .... 31

4.3 Internal State. .. .. .. .. .. ... .. ... .. ... .. 35

4.4 Second-Order IIR Lowpass Filter Simulation .. .. .. .. ... 38

4.4.1 Impulse Response .. .. .. .. .. .. .. ... ... 38

4.4.2 Unit Step Response. .. .. .. .. .. .. ... .. 39

4.4.3 Sinusoidal Response. .. .. .. .. .. .. .. .... 41

4.4.4 Pseudo-Random Number Sequence Repne 45

4.5 Predicting 3-D Head Position in Time .. .. .. .. .. .. ... 45

4.6 Voice Data Reconstruction. .. .. .. .. .. .. .. .. .... 49

4.7 Summary .. .. .. .. .. .. ... .. ... .. ... .... 52

iv



Page

V. Conclusions and Recommendations .................... 53

5.1 Conclusions .. .. .. .. .. .. .. ... .. ... .. .... 53

5.2 Recommendations .. .. .. .. .. .. .. .. ... ... ... 54

5.3 Future Research .. .. .. .. .. .. .. ... .. ... .... 54

Appendix A. Software Development. .. .. .. .. .. .. ... .. .... 55

A.1 File Parameters .. .. .. .. .. .. ... .. ... .. .... 55

A.2 Environment .. .. .. .. .. .. .. .. ... .. ... .... 56

A.3 Output. .. .. .. .. .. .. .. ... .. ... .. ... .. 57

Appendix B. Recurrent Neural Network Source Code .. .. .. .. .. ... 58

Appendix C. Source Code for Creation of Data .. .. .. .. .. .. .... 75

Appendix D. Utility Source Code. .. .. .. .. ... .. ... .. .... 78

Appendix E. Statistical Prediction Algorithim and Source Code .. .. .... 90

E.1 Statistical Prediction Algorithm .. .. .. .. .. .. .. .... 90

E.2 Source Code Listing. .. .. .. .. .. .. .. ... .. .... 91

Bibliography .. .. .. .. .. ... .. ... .. ... .. ... ... .. .... 98

Vita. .. .. .. .. .. .. ... ... .. ... .. ... .. ... .. ... .. 100

v



List of Figures

Figure Page
1. Single-layer perceptron with sigmoidal processing ............... 6

2. A general recurrent neural network ......................... 8

3. XOR problem feature space ............................. 18

4. Pseudo-random spatial distribution of the XOR training set ........ .. 20

5. Network configuration for learning internal state ................ 22

6. Network configuration for second order IIR lowpass filter test ...... .. 25

7. Learning rate modification results .......................... 30

8. XOR spatial distribution decision regions ..................... 33

9. XOR spatial distribution decision regions ..................... 34

10. Internal state training output after 20 epochs .................. 36

11. Internal state test results after training 20 epochs ................ 37

12. Desired frequency response of the Butterworth filter ........... ... 39

13. Filter impulse response training results ...................... 40

14. Filter frequency spectrum training results ..................... 40

15. Unit step response test results ............................ 42

16. Unit step frequency response test results ..... ................ 42

17. Cosine wave response test results ......................... 43

18. Cosine wave frequency response test results .................. 43

19. Sine wave response test results .......................... 44

20. Sine wave frequency response test results ..................... 44

21. Pseudo-random number sequence response test results .......... ... 46

22. Pseudo-random number sequence spectral response test results ...... .. 46

23. Predicting head position training results (2 time steps) ............. 47

24. Comparison of statistical prediction and network prediction error ..... 48

vi



Figure page

25. Network classification results for voice data.................. 50

26. Network decisions made in the reconstruction program .. .. .. .. .... 51

vii



List of Tables

Table Page
1. The time separation for ab pairs in the training data set. .. .. .. .. ... 23

2. The time separation for ab pairs in the test data set. .. .. .. .. .. ... 23

3. Training weights for the internal state problem .. .. .. .. .. .. .... 38

viii



A TIT/GEO/ENG/91D-02

Abstract

A fully recurrent neural network was applied to the function prediction probL-II.

Fhe real-time recurrent learning (RTRL) algorithm was modified and tested for use Ps a

viable function predictor. The modification gave the algorithm a variable learning rate and

a linear/sigmoidal output selection. Verifying the networks ability to temporally learn both

hc classic exclusive-OR (XOR) problem and the internal state problem, the network was

then used to simulate the frequency response of a second order 1R lowpss Butterworth

filter. The recurrent network was then applied to two problems: head position tracking, and

voice data reconstruction. The accuracy at which the network predicted the pilot's head

positicn was compared to the best linear statistical prediction algorithm. The application

of the network to the reconstruction of voice data showed the recurrent network's nbi'Iy

to learn temporally encoded sequences, and make decisions as to whether or not a spzeh

signal sample was considered a fricative or a voiced portion of speech.

ix



FUNCTION PREDICTION

USING RECURRENT NEURAL NETWORKS

L Introduction

The ability of machines to perform accurate function prediction remains an unsolved

problem. Although conventional sensors used in military applications provide enough in-

formation for a human to predict an event's outcome, the extension to automatic prediction

by machines is still impractical using current computer architectures. According to Webster

(8), to predict is to

declare in advance; esp: foretell on the basis of observation, experience, or
scientific reason.

Therefore, function prediction, as defined in this thesis, is the declaration of the future

value of a specific function based upon that function's history.

The use of recurrent neural network theory provides a novei approach to solving this

problem. Biological neural networks readily and easily process temporal information; ar-

tificial neural networks should do the same. Formulated from biological research, artificial

neural networks provide a unique approach to solving problems that could prove quite suc-

cessful in the areas of speech processing, image recognition, and function prediction (7).

Recurrent neural networks are artificial neural networks which permit the encoding and

learning of temporal sequences. This is an important feature in a world governed by time

dependent processes. Thus, properly trained recurrent neural networks could prove quite

successful in applications involving time dependencies, including function prediction.



1.1 Problem

The goal of this thesis is to perform accurate function prediction using recurrent

neural networks.

1.2 Background

Publications in the field of neural networks span a multi-disciplinary spectrum:

neurobiology, physics, psychology, medical science, mathematics, computer science, and

engineering. As such, it is difficult to accurately compile a thorough summary of where

neural network technology stands today. However, a broad sampling of current literature

centered on the topic of recurrent backpropagation neural networks yields a more focused

review. Chapter II contains highlights of some of the most promising recurrent neural

network algorithms, namely backpropagation through time (BPTT), modified BPTT, real-

time recurrent learning (RTRL), and subgrouped RTRL.

As technology improves, new and innovative algorithms are discovered which help

researchers and engineers alike in solving time-dependent problems. All of the algorithms

previously discussed possess the ability, if properly trained, to tackle many difficult tem-

poral tasks. Several of these algorithms are simply modifications of the backpropagation

through time method, or the real-time recurrent learning method.

1.3 Assumptions

It is assumed that the input feature vectors have already been selected for use in

training and testing the network.

1.4 Scope

The scope of this thesis will focus on solving the function prediction problem using

recurrent neural network theory. This theory is based on a modification of the RTRL

algorithm (23).

2



1.5 Approach

Function prediction using recurrent neural networks will be accomplished in four

steps. First, the recurrent neural network program must be created. The RTRL algorithm

will ' v coded using the C programming language. It will be tested using several temporally

encoded date sets to verify its performance. Second, the network's output will be modified

to determine if linear outputs combined with sigmoidal "hidden units" (processing units

which have no external connections) will further optimize the network's response. This

modification will enable the network to predict unbounded functions. Third, a variable

learning rate will be added to the network training algorithm to enhance the rate of

convergence. Finally, several functions will be used to test the network's prediction

abilities, including two specific applications.

3



II. Literature Review

2.1 Introduction

In this literature review, the current state of recurrent neural network technology is

summarized.

Biological neural networks readily and easily process temporal information; artificial

neural networks should do the same. Formulated from biological research, artificial neural

networks provide a heuristic approach to solving problems that could prove quite successful

in the areas of speech processing and image recognition (7). Recurrent neural networks

are artificial neural networks which use feedback to encode and learn temporal sequences.

This is an important feature in a world governed by time dependent processes. Thus,

properly trained recurrent neural networks could prove quite successful in applications

involving time dependencies.

This section contains a short background on basic neural network theory to aid

the reader's comprehension of that subject. In addition, the following algorithms are

highlighted: backpropagation through time (BPTT), modified BPTT, real-time recurrent

learning (RTRL), and subgrouped RTRL. These algorithms summarize the current im-

provements in recurrent backpropagation neural network technology.

2.2 Background

Artificial neural networks are nothing more than an application of biological concepts

to electronic machines. Another name for an artificial neural network is a neuromime. It is

called a neuromime because it attempts to copy or mimic the response of a true biological

neuron, the most basic processing element of the brain (13).

During the late 1950's, Rosenblatt invented a new class of machines which seemed

to offer what many researchers thought was a natural and powerful model of machine

learning (15). It was called the perceptron. The basic perceptron model consists of an

4



array of input sensory nodes randomly connected to a second array of associative nodes.

The random connections are called weights. The weights are randomly generated values

in the range [-1,1]. Each of the secondary nodes produces an output only if enough of

the sensory nodes connected to it are activated. The sensory nodes can be viewed as the

means by which outside information is captured by the machine, and the associative nodes

can be viewed as th6 input io the machine.

The output, or icsponse, of the perceptron is proportional to the weighted sum of the

associative node responses. In other words, if xi denotes the response of the ith associative

node and w, denotes the corresponding connection weight, then the response is given by

n

Rn= Wixi
i=:1

where n is the total number of associative nodes. Thus for a positive R, the stimulus is

said to belong to class 1, and for a negative R, the stimulus is said to belong to class 2.

That is how a decision is made. In its most basic form, the basic perceptron is simply

an implementation of a linear decision function. The perceptron learns by changing the

connection weights in such a way as to minimize the total response error. The nodal error

is the difference between the desired output and the actual computed response of the node.

In equation form, the error is given by

en = d, - Rn

where en is the error of node n, and d, is the desired value of node n. Therefore, the total

response error is the summation of the nodal errors over the entire length of the data set

(epoch).

In most applications, the output of the network is processed by a differentiable

function, usually the logistic squashing function (sigmoid). The output of the sigmoid is

5



XI "-<Vl NodeL

~ I
X2 : w2  k

+ 0)

+1

Typical Sigmold Activation Function

08

0.6

0.4

0.2

0
4 -2 0 2 4

a

Figure 1. Single-layer perceptron with sigmoidal processing. The output of the node is
the weighted sum of the inputs, processed through the sigmoid function. The
sigmoid function is displayed in the lower port of the figure.

given by
f() = I+ (1)

When the network input is processed by this function, the response is the weighted

sum of the inputs, including the bias term 0, processed thi'ough the sigmoid function. Thus

the resulting output is given by

n

n = fn(E WiXi + 0)

i=1

Figure 1 details the output of the sigmoid and gives a good picture of what the network

node should be viewed as.

To date, many other architectures have been proposed which extend the basic co-i-

cepts introduced by Rosenblatt. These new networks are called by various names: mul-

6



tilayer perceptrons, feedforward neural networks, backpropagation networks, recurrent

backpropagation, and so on. The term backpropagation refers to the way Interconnection

weights are updated; that is by propagating backward from the output to the input, chang-

ing each connection weight in such a way as to minimize the total error. A recurrently

connected neural network is a backpropagation network that contains feedback loops from

previous states (timed inputs). The outputs that feedback are u-sed as part of the next

sequentially timed input. So, the output at time t + I is predictive based upon the current

input and the previous output. As with the input vector, the feedback connections each

have their own adaptable weights. These recurrent weights are changed just as before in

order to minimize the total error over the epoch length. Figure 2 shows a general layout

of a recurrent neural network. Notice that the current input vector at time t is composed of

a bias (always equal to one), the external inputs, and the previous network's output. This

is a convenient way to show how feedback is processed through the network.

2.3 Scope

Publications in the field of neural networks span a multi-disciplinary spectrum:

neurobiology, physics, psychology, medical science, mathematics, computer science, and

engineering. As such, it is difficult to accurately compile a thorough summary of where

neural network technology stands today. However, a broad sampling of current literature

centered on the topic of recurrent backpropagation neural networks yields a more focused

review.

The scope of this review will t, 'u on current literature detailing the improvements

in recurrent backpropagation neural network ticnnology. Most of the improvements

presented are simply modified versions of previously published work.

2.4 Backpropagation through time (BPTT)

Much of the current research has focusel on the use of recurrent neural networks that

deal with time.varying i:iput or output in nontrivial ways. Rumelhart describes a general

7



extental outputs

YI(t+l) Y2(t+1)

hidden nodes
Y3(t+l) Yn(t+l)

bias Yfi)t Y2(t) Y3(t) Yn(t)

X1(t) X2(t) Xm(.) previous outputs

external inputs

Figure 2. A general recurrent neural network. The number of external inputs, external
outputs and nodes are user-defined. The output ai time t + 1 is predictive
based upon the current input and the previous output. The network is fully
interconnected by connection weights, adjusted using the gradient-descent
method. Feedback is introduced ly using the network's previous output as part
of the currert input.

framework for such a problem as a recurrent network which unfolds into a multiiayer

feedforward network that grows by one layer on each time step (18). The adjustments to

the network's connection weights are designed to minimize a time-averaged measure of

the network's overall learning error. This is referred to as barkpropagation through time

(BPTT). Its strength lies in its generality, but a corresponding weakness is its growing

memory requirement when trained on arbitrarily long sequences. It is this method (BPTT)

which most researchers tend to modify. For example, Rohwer and Forrest (14) presented

a variation of the backpropagation feedforward training method (18). This method can

be indirectly applied to time-dependent problems in arbitrarily connected networks by

modeling a virtual network made from several copies of the original, with one copy

for each time step. The adjustments to the network's connection weights are designed

8



to minimize a time-averaged measure of the network's overall learning error. In this

method, erroi.f are assessed and handled simultaneous''v throughout the network rather

than propagated through it. It can be applied directly to arbitrarily connected networks,

provided that a certain criterion related to the training problen is ..atisfied. When this

criterion is not met, a modification of the training problem can be found which properly

improves the stability of the network.

..5 Modified BPTT

There are many recurrent neural network models whos. architectures are modified

versions of previously pubiished work. For example, Pineda (10) has recently generalized

Rumelhart's backpropagation learning algorithm for feedforward neural networks (18)

to recurrent neural networks. Pearlmutter (9) has further generalized this algorithm to

recurrent networks that produce time-dependent trajectories. The Pearlmutter architecture

requires muh more training time than that of the Rumelhart or Pineda algorithms. As

a result, Fang and Sejnowski (2) modified the Pearlmutter algorithm to improve both its

performance and speed. The Fang-Sejnowski article detailed the modifications on the

learning update rule which allows adaptable independent learning rates for individual

parameters in the algoithm. This allows fast parameter estimation whiie avoiding most

cases of catastrophic divergences.

2.6 Real-ime Recurrent Learning (RTRL)

One particularly interesting ,rticle describes a learning algorithm for training com-

pletely recurrent, continually updated networks to learn temporal tasks (23). This technique

emphasizcs using uniform starting configurations that contain no previously known infor-

mation about the temporal nature of the task. More precisely, it is a gradient-following

learning algorithm which tracks the total network error along a trajectory which micimizes

this total error. Its main advantage is that it does not require a precisely defined training

interval. It operates while the system is running. A disadvantage is that it requires .nonlo-

9



cal communication during training. This means it is computationally expensive. Yet, the

algorithm allows recurrently connected networks to learn complex tasks that require the

retention of information over fixed or indefinite time periods. This algorithm is referred

to as the real time recurrent learning (RTRL) algorithm. It is this algorithm that this thesis

effort is based upon.

2.7 Subgrouped RTRL

Whereas RTRL has been shown to have great power and generality, it has the dis-

advantage of requiring a great deal of computation time (CPU intensive). To address this

problem, Zipser proposed an improved technique which reduces the amount of computa-

tion required by RTRL witlfjut changes in network connectivity (24). The reduction in

computation time is a result of ner york subgrouping. The original network is divided into

subnets for the purpose of er.or propagation, leaving them undivided for activity propa-

gation. This means that during training, the network is subgrouped only when the error

is propagated backward through the network's connection weights. During the normal

feedforward propagation portion, the network remains fully connected. A comparison of

this new method and the previous RTRL method showed the subgrouped RTRL algorithm

to be 10 times faster on learning to be a finite-state part of a Turing machine (24).

2.8 Summary

As technology improves, new and innovative algo.ithms are discovered which help

researchers and engineers alike in solving time-dependent problems. All of the algorithms

previously discussed possess the ability, if properly trained, to tackle or completely solve

many difficult temporal tasks. Several of these algorithms are simply modifications of the

backpropagation through time method, or the ma! :tire recurrent learning method.

Although great strides have been made in advancing recurrent neural network tech-

nology, further research is still needed. Most of those algorithms are implemented on

digital machines. Because of this, routines can be constructed in code which cannot be

10



physically realizable. That is, they cannot be implemented in hardware configurations.

Therefore, further research is necessary to determine whether or not these recurrently con-

nected networks can be realized as physical elements, thus greatly increasing their speed

and utility.

11



III. Methodology

3.1 Introduction

Citing the work of several neural network researchers, Chapter II covered a subset

of the most recent research into recurrent artificial neural network algorithms. Specifically

noted were the real-time recurrent learning (RTRL) algorithm, and the subgrouped RTRL

algorithm. This thesis seeks to encode the RTRL algorithm, perform several modifications,

and use the resulting network as a reliable engine for function prediction problems.

This chapter covers the development, modifications, and testing of the RTRL al-

gorithm for function prediction applications at AFIT. The basics of the RTRL algorithm

along with the current modifications of this algorithm are described. In addition, the testing

procedures and training methods used on the algorithm are discussed. The chapter con-

cludes with a description of how the recurrent neural network was applied to two specific

problems.

3.2 RTRL Algorithm

The real-time recurrent learning algorithm (23) is a gradient-following algorithm for

completely recurrent networks running in continually sampled time. The architecture of

the network consists of a user specified number of input nodes, a unity input bias, and a user

specified number of "hidden nodes" and output nodes (see Figure 2). The output nodes

(or hidden nodes for that matter) were designed originally to process the nodal activation

using the sigmoid function (Eq 1). The nodal activation is defined as the weighted sum

of all the inputs to a particular processing node. Each output node is fully connected, by

weighted connections, to every other node in the network, including external inputs and

previous outputs. Once the output is computed, it is returned and used as a part of the new

network input.

12



The derivation of the RTRL algorithm is contained in the article by Williams and

Zipser (23). In this thesis, only the most important equations will be highlighted. The

basic network has n units (nodes) and m external inputs. Any or all of the network units

can be outputs. Let yk(t) denote the output of the kth node at time t, and let xk(t) denote

the kth external input signal to the network at time t. Now define zk(t) to be the composite

network input at time t. In other words, zk(t) is obtained by concatenating x(t) and y(t),

so that

Zk(t) Xk(t) ifkE1 (2)
yk(t) ifkEU

where U denotes the set of indices k such that zk is the output of a unit in the network,

and whe-re I denotes the set of indices k such that zk is an external input. Note: the unity

bias term is assumed to be a part of the m inputs. With a fully interconnected network, the

weight matrix wij becomes a single n x (m + n) matrix, with i corresponding to a specific

node, and j corresponding to a specific input.

The out )ut of the kth unit as a function of the input vector and connection weights

(the nodal activation) is given by

YO + 1) = A (Sk() (3)

where fk is the unit's processing function, and the nodal activation Sk(t) is given by

SO~) = , wkIzt~t). (4)
leUuI

For this thesis, the unit's processing function will be either sigmoidal (Eq 1), or a combi-

nation of linear and sigmoidal units. Notice in Eq 3 that the output of any unit y(t + 1)

is not influenced by the external input until time t + 1. This means that given the current

input value at time t, the network will compute (predict) the output for time t + 1. This fact

is important when performing function prediction. In addition, it is important in knowing

how to set up the training and testing data sets so that the desired network output is located

13



at time t + I as opposed to time t.

Since Eqs 3 and 4 specify the entire discrete-time dynamics of the network, the weight

update equation must be specified according to these dynamics. This is accomplished by

measuring the network performance over time, and then computing its gradient in weight

space, following the negative gradient to a minimum total error. For this derivation, the

error is defined as

er den dk(t) - yk(t) ifk E T (5)
o0(t) = ) otherwise

where T denotes the set of indices k E U for which there exists a target value dk(t) that

the output of the kth unit should match. Therefore, the total network error is defined as

Jtotai(t) = I E e,(t)2. (6)

It is the negative gradient of this total error that must be followed to a minimum value.

The weight update rule adjusts the weight matrix along a positive multiple of the

negative gradient of the total error. To achieve this weight update rule, an incremental

delta weight (weight change) value is required. This delta weight is initially defined as a

fixed multiple of the gradient of the total error with respect to the connection weights at

each time step. In other words,

Aw,,(t) = (7)awij

where a is some fixed positive learning rate. For this thesis, the learning rate will not be

fixed. This modification will be further described in the modification section to follow.

Therefore, following Williams and Zipser's derivation for gradient descent, the

algorithm must compute the trajectory by

OJ(t) - et)Ok) (8)
kEU OWij

14



where 2D(t is a measure of the sensitivity of the output at time t to a small change in wi.
OwEj

It is assumed that the initial conditions, external inputs, and remaining weights are not

altered at all during this sensitivity measure. Thus the sensitivity of the network at some

future time is given by

Ok+1= f'[Sk(t)] WkIpSJ + 6ikzj(t) (9)

for all k E U, i E U, and j E U U I. The term 6ik denotes the Kronecker delta function.

Thus, by defining the variable

rp #t + 1)= o~k(t + 1)
Owi 

'

the network dynamics is governed by

p (t + 1) f[sk(t)] Wk ,jj + bikz(t) (10)

where the initial conditions are defined as

pik(to) = 0.

For this thesis, when the output function is sigmoidal, the de' ative of the network

processing function with respect to the activation is given by

f'[Sk(t)]- Yk(t + 1)[1 - Yk(t + 1)]. (11)

When the output function is linear, the derivative of the network processing function with

respect to the activation is given by

fA[sk(t)] = 1. (12)

15



The RTRL algorithm is a gradient-following algorithm. This means that it follows

the gradient descent method for computing weight updates. However, because of it's

continuous time nature, it only approximates following the true negative gradient of the

error curve. This approximation is done by incrementally updating the weights at each

time step rather than by the traditional batch update method, where the weight changes

are summed and then added to the existing weights at the end of each epoch. An epoch

is simply one complete pass through the entire data set. While the batch method follows

the true gradient of the total error, the RTRL technique is known to work well in practice.

The use of a small enough learning rate leads to a net weight update whose direction is a

close enough approximation to the true gradient.

3.3 Modifications

Several modifications have been added to the RTRL algorithm to better adapt it

to the function prediction task. First, the network output was modified to enable the

external output units to process as linear units rather than as sigmoidal units. The hidden

units remain as sigmoidal processors. Only the external output units were modified.

Although the original algorithm did not have linear outputs with sigmoidal hidden nodes,

this modification would greatly increase the network's use in applications where the output

exceeds the range of 0 to 1. With a linear output, the network's response can be read and

interpreted directly. In addition, linear outputs do not require the desired output vector to

be normalized, thus saving computation time.

The second modification to the standard RTRL algorithm was to add a variable

learning rate to provide for an increased co.. ,.rgence of the total error. The learning rate

will be variable based upon the stability of the total error accumulated over an entire epoch.

If the ratio of the previous total error to the current total error is less than a desired constant

less than one, or if the difference between the previous total error and the current total error

is less than zero, then reduce the learning rate by a factor of two (arbitrary). Otherwise,

do not change the learning rate. If the difference between the previous total error and the

16



current total error is less than zero, this means that the total error is beginning to increase

or oscillate. By reducing the learning rate at this point, the total error will continue to

decrease until convergence. The ratio of the previous total error to the current total error

measures the incremental change in the total error in time. If this change is less than the

desired incremental change, the learning rate is reduced. The desired incremental change

for this thesis is 0.999.

To verify that the learning rate modification increased the network convergence, a

series of tests were performed to measure the average total error of the network with and

without the variable learning rate. The recurrent network was configured with 1 input, 1

sigmoidal output, and 1 hidden sigmoidal unit. The training data set contained a pseudo-

random number sequence 1024 vectors long. Chapter IV contains the results of these

tests.

3.4 Testing

The network was tested using several temporally encoded data sets. The first task

was to train the network to learn the exclusive OR (XOR) operation. Although XOR is not

inherently time dependent, the network will learn it if the output is delayed for a specified

amount of time. The next problem attempted was to teach the network to learn an internal

state problem (22:97-100). That is, the network must recognize that two particular events

have occurred in a prescribed order, regardless of the number of the intervening events.

The network was then trained to predict the frequency response of a second order IIR

lowpass (Butterworth) filter. IIR is an acronym which means "Infinite Impulse Response".

This was done by training the network on the impulse response of the Filter, and then

testing the response of the network to various inputs.

3.4.1 Exclusive OR (XOR) Exclusive OR (XOR) is a disjoint region problem (see

Figure 3). This means that there are two disjoint regions in the decision space for each

class. The classes must be separated by at least two decision planes before an input value

17



can be correctly classified into one of the class regions.

Feature Space

S.... class 1 , ....I !; classO0 .. '.:

S . ............

.. ...... . * .." "class0 " .. I. class 1

4. . clss .... :. la'"s

7.,:;,~.. ..:.o.,.¢.;.i ... . ........ *...

, .o. ... : , :, o ..... I ......... . .. .

X

Figure 3. The disjoint region, or exclusive OR, feature space. No single decision plane
can separate the regions by class.

Multilayer perceptrons trained with back propagation have demonstrated an ability

to learn this problem very well (13:53-61). The use of multiple layers is to allow the

formation of multiple decision planes within the feature space.

Since a recurrent neural network can be viewed as a multilayer feedforward neural

network which has been folded back onto itself in time (18), it should also be able to

solve the XOR problem just as well. However, some alterations to the data set need to be

considered. Namely, the desired output of the data needs to be delayed a specified length

of time in order to accommodate the predictive nature of the recurrent network. These

alterations were required because the XOR problem is not a good test of a recurrent neural

network. There is no time dependency within the XOR problem unless it is physically

manipulated to contain timed information.

Thus, the XOR problem was included in this thesis in order to identify how the

recurrent network performs when given a temporally encoded spatial problem.

18



The fully connected recurrent network was configured with 2 external inputs, 1

sigmoidal output, and 4 hidden sigmoidal units. The learning rate started at 4.0. Sigmoidal

units were chosen because the desired output values are 0 and 1. Initially, the data consisted

of a randomly generated set of l's and O's as input while the output was the XOR of the

input delayed by two time steps. Each data vector was considered a separate time sample.

The net trained on a randomly generated binarized XOR data file (that is, the values were

either 0 or 1). The number of training vectors was 1024, and the training concluded after

20 epochs. The decision threshold for correctness was 0.5; if the output was greater than

0.5, the output was considered a 1, and if the output was less than 0.5, the output was

considered a 0.

After the network training was complete, the weights saved from the training run

were used as test weights. The network was tested using another binarized XOR data set

generated from a different random seed. This guarantees that the temporal presentation of

the XOR data set is randomly changed. The results of this test should show how well the

network weights generalized the XOR learning law.

Another separate training was performed to test the network's ability to generalize

the complete XOR data set. That is, can the recurrent network learn more that just the

verticies of the XOR data set? To answer this question, the network wac trained on an

analog XOR data set as opposed to the binarized XOR data set. The spatial distrubution of

the analog training data set is displayed in Figure 4. The network configuration contained

2 inputs, I sigmoidal output, and 5 hidden sigmoidal nodes. The network weights were

trained for 300 epochs through the 512 vector-length analog data set. The weights were

saved and used to test a 1024 vector-length analog data set. In addition, the two binarized

data sets were also tested using the above saved weights. If the network can generalize the

analog XOR data set in a true spatial sense, then it would be expected to perform perfectly

on the binarized XOR data sets. Chapter IV contains all the results and discussion of these

tests.

19



Spatial Distribution of XOR Data
1 -0  v 0 0 0

0 o00 ! 000 0 0 000

0.9)0 0
: 0 0g~o*00 * 00 $ 44o0 0 0 0- 0 00 0 00.9 00 0 o oo Oo

*00 0 °%o 0°° 00 o 0 0 o0 o 0 0o o

o 0 V o o' o 0oo , oo o 00 o o 0

0.7 0 %00 OA. 4P0 0 0 0 o 0 0o 0

0 v~' v~,O 0 0 0 0%

> 10 . 00 0

0.8 o 000 0000 0 o
0.6 0 0 0 0 0 0 0 000 0%0 0

"  0 
o' 0

'-'0 " * ft.. 0.,o ~ o o, * o* 000 o 0'

0.5%0 o o 0S. 0 % 0

0. 0 * 0  0 0 o 00. 0 0000 0000 i0 ,0 0
0080 0 0 0

000 *% 0

oo 0 0 00o00.30 ' 0 * 0 oo00 0
0 I " 0 00 * $ o% o*1 0o •o oo02o0? l ' ooo 00

0. 00 0
0 0 00% ~ ~ ~ 0 00, 04804 00

00 0 0 00 00 0 0 %0 0
0. 00 0o~ 008 *0 00* 0 0 4 0

00D 0 o0 00 0 0 00 00 00 0 o go OC~ 0 0 0% ,0 0 0

0 0.1 0.2 0.3 , .4 0.5 0.6 0.7 0.8 0.9

Input 2

Figure 4. Pseudo-random spatial distribution of the XOR training set used to demonstrate
the recurrent network's generalization ability.

20



3.4.2 Internal State Learning to represent internal state is considered a simple

sequential recognition task for humans. However for traditional feedforward neural net-

works, this is a nearly impossible task. This test should demonstrate the power of a simple

recurrent network on timed sequential signals.

As demonstrated by Williams and Zipser (22:97-.100), let there be four inputs to the

network, each line corresponding to the letters a b c and d respectively. The a and b lines

are the actual input decision lines and the c and d lines serve as distractor lines only. On

any given time step, a randomly chosen input line is given a value of 1, with all others

given the value of 0. The desired output for the network is 1 on the time step immediately

following the first occurrence of b following an a. Otherwise, the desired output is 0.

For this task, the network consists of 4 external inputs, 1 sigmoidal output, 1

sigmoidal hidden node, and an initial learning rate of 5.0. The data set contained 95 time

samples (vectors). The initial weight values were randomly generated from the interval

[-1,1]. Figure 5 shows the recurrent network configuration used for training on the internal

state problem. Because the network algorithm has a variable learning rate, the initial value

of the learning rate is used to get the network started on the "right track". For this test, if

the learning rate were less than 5.0, the network would still converge but at a slower rate.

If the learning rate were greater than 5.0, the network total error would initially converge

rapidly but would then rapidly diverge. The algorithm would then lower the learning rate

to half of its original value and continue until it converges.

The network was trained and tested on two data sets which contain randomly gen-

erated input vectors. However, the time separation between the occurrence of b following

a is different in both data files. This means that the occurrence of the specified state

transition differs between the two data sets. For the training set, there were 27 occurrences

of b while only 10 of these b's followed consecutively after an a. The time separation

between ab pairs for the training set is illustrated in Table 1. For the test set, there were

15 occurrences of b while only 8 of these b's followed consecutively after an a. The time

separation between ab pairs for the test set is illustrated in Table 2. Therefore a correct

21



output

nodel n&Ae2

unity nodel node2
bias Ifeedback feedback

a b c d

Figure 5. Recurrent network configuration for learning to represent internal state. For
this task, the network consists of 4 external inputs, labeled a, b, c, and d, 1
output, 2 sigmoidal nodes, and an initial learning rate of 5.0. The feedback
nodes are the previous (t-1) values of both nodes. The entire bottom row of
nodes represents the input vector z(t).

prediction of the occurrence of the transition in the test set will demonstrate the network's

ability to learn the internal state problem presented. The output of the network and the

results of this test are contained in Chapter IV.

3.4.3 Second Order IR Lowpass Filter This test demonstrates the network's

generalization ability in simulating a linear system. A second order lowpass Butterworth

filter was used as the linear system for this test. The filter has a normalized cutoff frequency

of 0.1 and is described by the following difference equation:

y[t] = 0.0676(x[t] + 2x[t - 1] + x[t - 2]) + 1.1422y[t - 1] - 0.4124y[t - 2] (13)

A data set was generated, using this difference equation, to train the network to learn the

frequency response of the filter. I he input to the network is the sampled test signal, and

the desired output of the network is the output of the difference equation offset by one time

22



Table 1. The time separation for ab pairs in the training data set. The separation is the
number of time steps between the occurrence of an a and the first occurrence of
a b in the training set. The occurrence list shows how many of the respective
separations exist within the data set.

ab pair separation Occurrence
1 2
2 3
4 1
5 1
6 1
7 1
18 1

total= 10_

Table 2. The time separation fo, ab pairs in the test data set. The separation is the number
of time steps between the occurrence of an a and the first occurrence of a b in
the test set. The occurrence list shows how many of the respective separations
exist within the data set.

ab pair separation Occurrence
1 3
2 1
7 1
9 1
22 1
29 1

total = 8

23



step (t + 1). The offset is to accommodate the predictive nature of the recurrent network.

Since the input does not affect the output until time t + 1, the desired output value in the

data set must be located at mat t + 1 position. The data set contained 128 data points.

Appendix C contains the C code (makeidata.c) used to generate this data set.

When the input to a system is a single delta function, the output is called the impulse

response of the system. Because the Butterworth filter is a linear system, a single delta

function (impulse) was used as the input in order to obtain the system's impulse response. A

linear system is completely characterized by its impulse response (3:143-144). This means

that if the linear system's impulse response is known, the response to a complicated input

can be determined by decomposing the complicated input into a superposition of a large

number of appropriately weighted and positioned delta functions. The overall response is

then determined by summing the responses to all the individual delta functions. Therefore,

if the recurrent neural network is trained on the impulse response of the filter, the network's

response should completely characterize this linear system, reg, rdle.qs of the complexity

of the input signal.

The network consisted of I external input, I output, and I sigmoidal hidden node.

For this test, the output nc..!.' was defined as a linear function. Figure 6 shows the network

configuration for the tests.

The network wa trained on the impulse response of the filter. This means that the

desired output of the network was the actual output of the Butterworth filter when the

input was a single impulse. The input to the network was a single impulse. After training,

the following input signals were used to test the network's ability to simulate the filter: a

unit step, two different sinusoid;, and a pseudo-random signal (to simulate white noise).

Again, for this test, the network was trained only on the impulse response of the filter.

After the input signal was applied to the network, the output was processed through

an jF1 (Fast Fourier Transform) algorithm, and the network frequency spectrum was

compared to the desired frequency response of the filter. More specifically, the frequency

spectrum of the output of the difference equation was compared with the frequency spec-

24



output

nodel node2

unity node 1 node2

bias feedback feedback

input
signal

Figure 6. Recurrent network configuration for learning to simulate the frequency re-
sponse of a linear system. For this task, the network consisted of 1 external
input (the input signal to the filter), I linear output (the "filtered" input), 1
sigmoidal hidden unit, and a variable learning rate (initially 0.02 for a linear
output unit).

trum of the output of the recurrent network. The comparison was performed using all four

input signals separately. The results of these tests are highlighted in Chapter IV.

3.5 Applications

If this real-time recurrent learning network can simulate the response of a linear

system, the next straightforward application would be to test the predictive ability of the

network on real-time problems. Two problems of particular interest are described as

follows: predicting 3-D head position in time, and voice data reconstruction.

3.5.1 Predicting 3-D Head Position in ime Given the x, y, and z coordinates of

a pilot's head in Euclidean space, the recurrent network should be able to predict what the

future position of the pilot's head will be based upon the pilot's previous head position.

25



For this application, the data set (provided by the Aeronautical Systems Division, Wright-

Patterson AFB) contained raw position coordinates as the input vector, and the actual

position coordinates for where the head position was in time as the desired output vector.

These position vectors were divided into separate coordinate positions. That is, the input

and desired output for the x-axis was extracted into a separate data set, and likewise for

the y-axis and z-axis data.

The network configuration consisted of I input (the current head position at time t),

1 sigmoidal output (the predictive head position at time t + r, where r is some arbitrary

time), and one sigmoidal hidden unit. The desired output in the data set was offset by 2

time steps. This means that for a given input position, the desired output position is the

actual position either 2 time steps in the future. There were 8997 position samples in the

data set. The network was trained on the first 1000 samples of the data set for 400 epochs

with an initial learning rate of 3.0. Following training, the network weights were used to

test the remaining 7997 data points to see how well the recurrent network could predict

the respective coordinate position.

The training results are then compared to the results of a statistical prediction algo-

rithm which theoretically produces the best linear approximation. The statistical prediction

algorithm is fully described in Appendix E. This comparison is expected to show how the

recurrent network performs with respect to the best linear prediction. Chapter IV contains

all the results of this application of the recurrent network.

3.5.2 Voice Data Reconstruction For the task of voice data reconstruction, the

recurrent network was required to learn the difference between fricative (noisy speech)

and voiced (non-noisy) speech samples. More precisely, given a select set of input features

which should uniquely describe a sampled portion of speech, the recurrent network was

to classify whether that portion of speech was fricative (class 1) or voiced (class 0). If the

sampled portion of speech was classified as a fricative, noise was added to that portion of

the signal on reconstruction, whereas, if the sampled portion was classified as voiced, no

26



noise was added during reconstruction. Thus the reconstructed speech signal would regain

most of the high frequency content it lost before transmission (20).

The data set for this application consisted of four features computed from a variable

width sample of speech. The first feature was the total energy contained in the sample. The

second feature was the number of zero-crossings that occurred during the sample period

divided by the sample window length. The third feature was the number of slope changes

divided by the sample window length. And the fourth feature was the total energy below

500 hertz within the sample window. The desired output was a classification based upon

whether the input features described a noisy portion of speech or not.

Previous attempts at learning the data set used a feedforward neural network trained

with backpropagation. This network contained 4 inputs, 4 hidden sigmoidal nodes, and

a 2 class output. After training, the network weights were saved and used as previously

described in the reconstruction process to classify noisy or non-noisy data. Training

accuracy was 87%. However, this feedforward network would not make the proper

decisions regarding the noise classification of the data when used in the reconstruction

program. Therefore, another network architecture was sought out to attempt to solve the

problem: the recurrent network.

The recurrent network configuration consisted of 4 inputs, 1 sigmoidal output, and

no hidden units. The network was trained for 400 epochs on a data set containing 1500 data

samples. The learning rate was initialized to 0.02. If the learning rate were greater than

0.02, the total error for a single epoch would be exceedingly large, causing the network to

catastrophically diverge.

Following training, the network weights were saved and used in the reconstruction

program. Within the reconstruction program, the weights were used with the transmitted

signal to reconstruct the speech pattern, adding noise where needed based upon the net-

work's classification decision. Chapter IV contains all the results of this application of the

recurrent network.

27



3.6 Summary

The methodology for developing and testing the RTRL algorithm has been described.

The dynamics of the RTRL algorithm were described and the modifications to the original

algorithm were outlined. Next, the testing methodology used in this thesis was described.

The results of these tests show how robust the recurrent network is to learning temporal

XOR, representing internal state, and simulating a linear system. The predictive ability of

the recurrent network was then applied to two problems: head position tracking, and voice

data reconstruction. Chapter IV contains the results and a discussion of these tests.

28



IV Results and Discussion

Chapter III covered details of the development, modification, and testing of the

RTRL algorithm as a viable part of a function prediction scheme. This chapter contains

the results of these tests, including a section on the recurrent network's application to two

function prediction problems: 3-d head position tracking, and voice data reconstruction.

The results are presented in the same order as they appeared in Chapter III.

4.1 Modifications

To verify that the learning rate modification increased the network convergence, a

series of tests were performed to measure the average total error of the network with and

without the variable learning rate. The recurrent network was configured with 1 input, 1

sigmoidal output, and 1 hidden sigmoidal unit. The training data set contained a pseudo-

random number sequence 1024 vectors long. The recurrent network was trained on this

data set for 500 epochs. The results displayed do not indicate that the network learned

to predict the pseudo-random sequence. Rather, the plots simply illustrate the difference

between using the variable learning rate modification and a fixed learning rate.

Figure 7a) displays the network training error when the learning rate is fixed at 4.0.

The total error decreases to a point and then diverges and becomes unstable. This implies

that the learning rate is not small enough to account for small weight variations required

within the network. Figure 7b) shows the exact same training as before, except with a

variable learning rate, initially set at 4.0. The network continued to converge throughout

the 500 epochs. The sharp drops in the error plot show when a change in the learning rate

occurred. The final learning rate value at the end of the training was 0.5. Using this final

value as the starting value for a fixed learning rate test, the network was trained again on

the same data -'a. Figure 7c) displays the results of this last test. Note that the network

continues to smoothly converge throughout the training run. Yet at the last epoch, the

total error was still not as low as that for the variable learning rate. This shows that a

29



Fixed Leming Rate Results11

alpha 4.0

10.5

10

S 9.5

9

0 50 100 150 200 250 300 350 400 450 500
TIME (arbluary units)

Variable Leaming Rate Results10i5 , , - , r .

alpha initially 4.0

10

9 b)
~ 8.5

8

7.5 . . . . . . . . .
0 50 100 150 200 250 300 350 400 450 500

TIME (arbitrary units)

Fixed Leaming Rate Results
8.9

alpha = 0.5
8.8

8.7

0 8.6

,Ka 8.5 C)

S 8.4

8.3

8.2

8.1
0 50 100 150 200 250 300 350 400 450 500

TIME (arbitrary units)

Figure 7. Results of using a variable learning rate. The total error versus epoch number
shows training using a) a fixed learning rate, b) a variable learning rate, and c)
a lower fixed learning rate.

30



large learinig rate initially, followed by a successively decreasing learning rate converges

rapidly when possible, and slowly when necessary. Therefore, the variable learning rate

modification has shown to be successful in increasing the network convergence to an

overall lower total error.

4.2 Exclusive OR

The first problem used to test the recurrent networks ability to learn was the classic

XOR problem. The recurrent network was initially trained on the binarized data set

described in the Chapter III. The learning accuracy for this binarized training data set

was 100% after 20 epochs, with a total squared error on the final epoch of 0.032. The

decision threshold for correctness was 0.5; if the output was greater than 0.5, the output

was considered a 1, and if the output was less than 0.5, the output was considered a 0.

However, this accuracy was meaningless unless the networks generalization ability was

tested on a separate data set.

For this test, the weights saved from the training run were used to test a separate

binarized data set generated using a different randomization seed. During the test, the

weights remained fixed, and the network processes the test data only once. In this test run,

there were zero prediction errors. Thus, the generalization accuracy of the network was

100% when tested on the separate binarized test set. In fact, there were zero errors for four

other binarized test sets, all of which were generated from separate seeds.

However, a separate test was performed to see how the network learns when trained

on an analog data set. After 300 training epochs (512 input vectors) on the analog data

set, the training accuracy was 98.1% correct, based on a decision threshold equal to 0.5.

The network weights were saved and used to test a 1024 vector-length test set containing

randomly generated analog values. After testing, the prediction accuracy was 93.1%

correct. Then two binarized data sets were tested using the weights computed from the

training run on the analog XOR data set. The results of the binarized data tests were as

follows: for the first binarized data set, the testing accuracy was 91.3% correct, and for

31



the second binarized data set, the testing accuracy was 90.8% correct.

These results were not really expected. It was expected that the network trained

on the analog XOR data set would be able to exactly learn the comer values (vertices).

However, the above results show that almost 10% of the data points in the binarized test

set were incorrectly classified. This implies that the network did not learn the true spatial

XOR problem. Rather, it learned the spatio-temporal XOR problem. In other words, the

network learned the spatial XOR problem as presented in a temporal sequence.

To further demonstrate that the network did not learn the true XOR problem, Figure

8 contains a spatial distribution plot of the analog XOR data set which identifies the points

which were classified correctly or incorrectly following testing. The diamonds represent

the points within XOR space which the network incorrectly classified. Notice how evenly

distributed the misclassified points are throughout the XOR regions. There were bad

decisions made in every region, even points very close to the vertices (comers). If the

recurrent network truly learned the spatial XOR problem, the bad decisions would be

expected to lie close to the intersecting lines (cross-hairs) between the respective XOR

regions.

Two more analog XOR data sets were created to see if the spatial decision regions

change as the temporal presentation of the analog XOR data changes. These new analog

XOR sets are identical except that the input sequence of XOR data is changed. The

first set will be referred to as test case 1, and the other as test case 2. Using the same

weights generated from training on the previously mentioned analog training set, the

testing accuracy for test case 1 was 90.1% correct, and for test case 2 was 90.5% correct.

Figure 9a) displays the spatial dicisions for this test case 1 and Figure 9b) displays the

spatial dicisions for this test case 2. This time, notice the difference in spatial location of

the misclassified points in Figure 9a)to the spatial location of the misclassified points in

Figure 9b). Since the temporal presentation of the data set changed, the decisions made

by the network changed also.

Therefore, it is suggested that the actual decision region the recurrent network uses

32



XOR Spatial Decisions
++ 1-+ 1 + + + + I

+ + +, -4.+ + + +
• ++ ++° _ ++q *+ + + + + .+ : ++

0.9 + + + + + .++. + + . + ++
4 +++ + ++++++ + + + ++ + +

++# +++ +*4*~ +44 + +4.4 +
+ + + + +* #I+ ++++ ++

0.8 + +,+ .+ + *- + +-
+ + + + ++ + ++0 . + + + +* +4T+.4+ .4.. -- + +

0.7 - + + + + + +* + +

+ 4. + + + + 4.. 4.+

4:4 ++ + .4. + ++ + 4. 00.6 + .+ + ++ ++ + ++++++ + 4+

*- 4.4A+4 + ~ + + + +-4 ~.~4*#+44

++ +++ ++ ++ + + + +4*+ + .++ *4
0.4 4. 4_. 41+ + 44.+4. + *4.4+4.+4.4.0.5 tq"' ++ +

+- -. - + ++ .4

0 +. ++ + + + * ++ ++
+ 4 4+ + + + +  +

.+ + + + + + 0 4. 4+0.4 4. 4.++. + *4. 4. ++ ++ + 4+ +++o + ¢ +++ A+4++ +
+ + + ++ + + ++ + +
+ + +4. ++ + ++ ++ + + +0.3 +' 4. * + + ++t0. + . +++ : + .,+ +" + + +,++

+,,++++ + + + +-H++ + ++ + ++ + + +++O +: + +,
+ + ++ 0 +, ,+ +4' + +

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

INPUT 2

Figure 8. XOR spatial distribution decision plot. The diamonds represent the points in
XOR space that the network incorrectly classified. There were bad decisions
made in every region, even for points very close to the vertices (corners). No
clear spatial decision region can be found. All of the incorrect decisions were
expected to be located near the cross-hair lines.

33



XOR Spatial Distribution
1 0(test case 1)

0 0

0.9 0 0 " accuracy

0.8 90.1%0.
. O 0 0

0 00.7 o 0

050 0 0 0
0 0. 0 00.

00 0 0 0

0.3 0

0.3 0 0 0
0.2 0°0 0

0 0 0 0 0

00
0. 00 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
INPUT 2

a)

XOR Spatial Distribution
. 00 (test case 2)

0.9 0o °0 0 accuracy

0.8 0 o 90.5%
oO 0

0.7 0 0 00 0 0
00

0.6 * 0 0

0 0 0 0

0, 0 0 0

0.4 o 0 0 0 0 ,

0.3 000
0.2 0

020 0 0
0

00

0.1 000

0 0, ,1 I -- 0 P

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
INPUT 2

b)

Figure 9. (a) XOR spatial distribution decision plot for test case 1. (b) XOR spatial
distribution decision plot for test case 2. The diamonds represent the points in
XOR space that the network incorrectly classified.

34



is described by a nonlinear spatio-temporal mapping. Previous research suggests that the

recurrent network learns the XOR problem by organizing itself into an appropriately lay-

ered feedforward network (22:96-97). However, if this were truly the case, the recurrent

network would simply create a clearly discernable spatial decision region as was previ-

ously expected. But as the previous results have shown, no clear spatial decision region

was formed. The recurrent network's XOR decision was made based on the temporal

presentation of the spatial information contained in the data set.

4.3 Internal State

The network's ability to represent internal state is outlined in the following plots. In

Figure 10, the output of the network is compared to the desired training output in time.

As outlined in Chapter III, the training data set consisted of a randomly generated input

line (a, b, c, or d), one of which set equal to 1 and the rest set equal to 0. The desired

output is 1 on the time step immediately following the first occurrence of a b following a,

and 0 otherwise. Figure 10 shows how the trained network was able to predict the desired

output after only 20 epochs through a 95 vector data set. These weights were saved and

used to test the network's generalization ability on a separate data set.

Figure 11 details how well the network can generalize from the training data set to

an application on a specific test data set. These results show a 100% accuracy in predicting

the occurrence of a state transition of as much as 29 time steps apart. Reference Tables

1 and 2 in Chapter III for the occurrence of ab pair and the respective time separations.

These results imply a specific capacity to remember. Yet these results also imply that the

network will identify the first occurrence of a b line transition no matter how long ago the

first a transition occurred.

In analogy, the network configures to be a set-reset state device (flip-flop). Reference

Table 3 for the following discussion. The occurrence of an a sets the state of the hidden

unit high while the occurrence of a b during a low state resets the state of the hidden unit to

low. If the previous state was high, the output will be high. But if the previous state was

35



Internal State Training Results
1.4 , , I

desired response -
1.2 network response +

decision threshold -

1 0 0 0 0 0 0 0 0 0 0

+
.. + + +

0.8 + ++

00.6

0.4

0.2 ++ + + + 

++

0 LI w ----- Iw -- I - m# * ---- - $of
0 20 40 60 80 100

TIME (arbitrary units)

Figure 10. Desired and actual output of the recurrent network after training. The decision
threshold for correctness was 0.5; if the output was greater than 0.5, the output
was a 1, and if the output was less than 0.5, the output was 0. The separation
of outputs greater than 0.5 represents the separation time between when an a
occurred and the first b occurred. Training accuracy was 100%.

36



Internal State Testing Results
1.4 1 1

desired response *
1.2 network response +

desision threshold ----

1 0 0 0 0

+ +

0.8

0 0.6

0.4

0.2
+ + .1- 4.

0 20 40 60 80 100
TIME (arbitrary units)

Figure 11. Internal state test output of the recurrent network after training 20 epochs.
The decision threshold for correctness was 0.5. The separation of outputs
greater than 0.5 represents the separation time between when an a occurred
and the first b occurred. Testing accuracy was 100%.

37



low and a b occurs, the output will remain low because the hidden unit has not been set

low. When the previous output was high, the recurrent weights for node one will always

reduce this high to a low, thus resetting the output until the next state traiisition occurs.

Table 3. Training weights for the internal state problem. The first row are weights for
the output node and the second row are weights for the hidden node.

bias wt a wt b wt c wt I d wt I recur wt 1 recur wt2 II
output node -6.636 -1.656 3.749 -2.582 -2.209 -2.877 5.480
hidden node -1.565 4.242 -4.055 -1.535 -0.609 -3.461 5.860

4.4 Second-Order fIR Lowpass Filter Simulation

As described in Chapter IlI, the recurrent network was trained to simulate second-

order IIR lowpass filter (Butterworth). The following input signals were used to test the

network's ability to accurately simulate the filter's response: a unit step, a cosine wave,

an inverted sine wave, and a pseudo-random number sequence (to simulate white noise).

Figure 12 shows the desired frequency response of the Butterwcrth filter.

4.4.1 Impulse Response The network was trained on the impulse response of

the filter. This was accomplished by generating a data set using the difference equation

displayed in Eq 13. The input to the generator was an impulse 6(t), where 6(t) equals I for

t = 0 and 6(t) equals 0 otherwise. The output of the generator was used as the desired output

of the network. The desired ouiput of the network was simply the output of the generator

delayed by one time step. In theory, the impulse response of a linear system completely

describes the system. Therefore, by training the network on the impulse response of the

system, the network should be expected to accurately simulate the response of a linear

system to any other input.

Figure 13 contains the results of the network after training for 600 epochs on the

desired impulse response of the filter. The output of the network was processed through a

38



Butterworth Filter Frequency Response

1

0.8

0.6

0.4

0.2

0
0 20 40 60 80 100 120

NORMALIZED FREQUENCY X 128

Figure 12. Desired frequency response of the Butterworth filter.

fast Fourier transform (FFT) algorithm and the results plotted in Figure 14. The weights

generated by the network after this training run were saved and used to test the network's

response to other input signals.

Based on the results in Figure 14, the recurrent network could not completely

memorize the impulse response of the filter, and thus, a complete filtering of higher

frequency components could not be learned. This is shown by the non-zero response in the

region where no frequency components should be. However, the amplitude of the higher

order frequency components will still be greatly attenuated. This does not imply that the

network did not learn to generalize the response of the Butterworth filter. The real test is

to apply the weights generated from this training to other input signals and compare the

results to the expected filter response.

4.4.2 Unit Step Response Using the weights generated by the network after it was

trained on the Butterworth filter's impulse response, the network was tested using a unit

39



Comparison of Butterwonh Filter Output to Network Output0.3 1 ,' 1

desired impulse response
0.25 network impulse response

0.2

0.15

a. 0.1

0.05

0 .......

-0.05
0 20 40 60 80 100 120 140

TIME (arbitrary)

Figure 13. Comparison of the network's impulse response to that of the desired impulse
response of the Butterworth filter after 600 training epochs. The impulse
response completely characterizes the filter.

Impulse Frequency Response of Filter and Network
1.2 1 1

desired frequency response
network frequency spectrum

0.8

0.6

0.4

0.2 . - .....-

0-
0 20 40 60 80 100 120

NORMALIZED FREQUENCY x 128

Figure 14. Comparison of the network's impulse frequency spectrum to that of the desired
frequency response of the Butterworth filter after 600 training epochs. Since
the recurrent network could not completely memorize the impulse response
of the filter, a complete filtering of higher frequency components could not be
learned. However, the amplitude of the higher order frequency components
will be greatly attenuated.

40



step as the input signal. A unit step is defined as equal to I for t >_ 0 and equal to 0

otherwise. The network response to the step input is shown in Figure 15, and Figure 16

shows the frequency domain representation to the same step input.

The results plotted in Figure 15 show how well the recurrent network's response

matched the expected response of the Butterworth filter. The one big difference is the

lack of an overshoot in the network's response. This is a feature common to a heavily

overdamped system, where as the Butterworth filter's response only shows slight damping.

Nevertheless, the network still showed an excellent ability to simulate the step response

of the filter. In the frequency domain results shown in Figure 16, small differences can

be noted throughout the plot. However, since the plot is log-linear, these differences are

amplified.

4.4.3 Sinusoidal Response The network's response was further tested by using

two different sinusoidal waves as inputs to the system. The first sinusoid was a cosine

wave that completes 2 cycles within 128 sample points. The response of the trained

network to this cosine wave is shown in Figure 17. Throughout the plot of the response,

the network response very closely predicted the expected response of the Butterworth filter.

In the frequency domain, it is apparent that this cosine wave was completely within

the passband of the filter. Figure 18 displays the actual network spectral response compared

to the expected Butterworth spectral response. As with the unit step response, the cosine

frequency response of the network so closely matched the cosine frequency response of

the filter that no significant differences can be noted.

The second sinusoid used to test the recurrent network's ability to simulate the

response of the Butterworth filter was an inverted sine wave that completes 4 cycles within

128 sample points. Figure 19 displays the response of the trained network compared with

the expected Butterworth filter response. It illustrates how closely the network response

predicted the expected response of the Butterworth filter. Figure 20 simply shows how

well the network learned the response of the Butterworth filter.

41



Unit Step Response Comparison
1.21

desired step response
I network stop response

S 0.8

0.6

0.4

0.2

0 20 40 60 80 100 120 140
TIME (arbitray)

Figure 15. Comparison of the recurrent network's response to a unit step input with the
Butterworth filter's response to a unit step input.

Unit Step Frequency Response Comparison

desired response
network response ....

0.1

0.001
0 20 40 60 80 100 120

NORMALIZED FREQUENCY X 128

Figure 16. Comparison of the recurrent network's spectral response to a unit step input
with the Butterworth filter's spectral response to a unit step input. Toe plot is
log-linear.

42



Filter and Network Cosine Response Comparison1.5 1..

desired cosine response -
network cosine response

1.1I
0.5 /

I /0 ... ... ...........t .... .......... .. .. ...... .. .. .......

-0.5

-1

-1.5
0 20 40 60 80 100 120 140

TIME (arbitrary)

Figure 17. Comparison of the recurrent network's response to a cosine wave input with
the Butterworth filter's response to a cosine wave input.

Cosine Frequency Response Comparison
100

desired response
network response .

10

------- ----------

0.1 1
0 20 40 60 80 100 120

NORMALIZED FREQUENCY X 128

Figure 18. Comparison of the recurrent network's spectral response to a cosine wave
input w;th the Butterworth filter's spectral response to a cosine wave input.
The plot is log-linear.

43



Network Test Results For Inverted Sine Wave Input
1.5 1 1

desired response

1 
network response

I I

0.5 1/I "
0 ........ .. .. ......... ... ... ..... .... .. i ........ ...............

-0.5

-1

-1.5
0 20 40 60 80 100 120 140

TIME (arbitrary)

Figure 19. Comparison of the recurrent network's response to an inverted sine wave
input with the Butterworth filter's response to an inverted sine wave input.

Network Frequency Response For Inverted Sine Wave Input
100 - 1 .

desired response
network response

10

0.1 ' ' ..

0 20 40 60 80 100 120
NORMALIZED FREQUENCY X 128

Figure 20. Comparison of the recurrent network's frequency response to an inverted sine
wave input with the Butterworth filter's frequency response to an inverted
sine wave input.

44



4.4.4 Pseudo-Random Number Sequence Response The last test of the recurrent

network's ability to simulate the response of a Butterworth filter was to apply a broadband,

noisy signal to the input of the network. The noisy signal was approximated by a pseudo-

random number sequence in the range [-1,1]. Figure 21 shows the results of the network's

response to a noisy input signal compared to the expected response of the Butterworth

filter to the same noisy signal. Although the network response does not exactly follow

the expected response, it does follow the expected response close enough to say that the

network has indeed learned to simulate the response of the Butterworth filter for a noisy

input signal.

In the frequency domain plot displayed in Figure 22, it is clear to see how the

frequency components in the cutoff region of the filter have been attenuated when compared

to the amplitude of the frequency components in the filter's passband. As identified earlier

in the training of the impulse response, the recurrent network did not completely memorize

the impulse response of the Butterworth filter. Thus, those frequency components falling

outside the filter's cutoff region will only be attenuated and not completely cutoff.

4.5 Predicting 3-D Head Position in Time

The recurrent network configuration consisted of 1 input (the current head position

at time t), I sigmoidal output (the predictive head position at time t + r, where r is some

arbitrary time based on the sampling rate of the system), and 1 sigmoidal hidden unit. The

desired output in the data set was offset by r = 2 time steps. This means that for a given

input position, the desired output position is the actual position displaced 2 time steps in

the future. There were 8997 position samples in the data set. The network was trained

on the first 1000 data points for 400 epochs with an initial learning rate of 3.0. Figure

23 illustrates how close the recurrent network predicted the head's y-position for T = 2.

Only the y-position was displayed because the x- and z-position plots were both equally

as accurate as the y-position plot.

Notice how the network prediction silghtly lags behind the actual y-position. This

45



Network Tet Results For a Random Input (Noise)
I

desired response
0.8 network response .

0.6
0.4

-0.2 4

-0.4

-0.6

-0.8-1.

0 20 40 60 80 100 120 140
TIME (arbitrary)

Figure 21. The results of the recurrent network's response to a noisy input signal com-
pared to the expected response of the Butterworth filter to the same noisy
signal.

Network Test Results For a Random Input (Noise)
40 1

desired response
35 network response

30

S 25

20'

15 I

10

5 i " f,1, \

0 20 40 60 80 100 120
NORMALIZED FREQUENCY X 128

Figure 22. The results of the recurrent network's frequency response to a noisy input
signal compared to the expected spectral response of the Butterworth filter to
the same noisy signal.

46



Network Training Results For Head Y-Position
0.8 ,

actual position
0.7 etwork prediction ....

error ----
0.6

0.5

0.4

R 0.3

0.2

0.1

0

-0.1 i I I I

500 520 540 560 580 600
TIME (arbitrary)

Figure 23. Predicting head position training results. The recurrent network trained for
400 epochs on 1000 data points. Only a portion of the results are displayed.
The network output was trained to predict the value of the input function two
time steps in the future. This plot is a comparison of the network output
y(t + 2) to the actual y-position at time t + 2.

47



indicates that the network did not learn to accurately predict the pilot's head position in

time. Portions of the networks prediction are very close to the actual values, but this is not

consistant throughout the data set.

Comparison of Network Error to the Statistical Predictior Error
0.03 1

network error

0.02 statistical prediction error

0

-0.01

-0.02

-0.03 -, /J IV
II

-0.04
500 520 540 560 580 600

TIME (arbitrary)

Figure 24. This plot is a comparison of the recurrent network's error e(t) to the statistical
prediction error.

So, how well does the network compare to the best linear prediction? A statistical

prediction algorithm was used for this comparison. The same data set used to train the

network was used in the statistical prediction algorithm. The results of this comparison

(shown in Figure 24) show that the network only slightly outperforms the statistical

predictor. The total mean squared error of the network was 0.000174 while the total

mean squared error of the statistical predictor was 0.000220. However, in terms of

prediction, portions of the network's output were very close to the actual signal whereas

48



the statistical prediction consistantly lagged behind the actual signal. On this point, the

network performance was better.

Thus, from these results, the recurrent network shows to be a more robust function

predictor than the best linear predictor. This is true for three reasons. One, the network

does not require that the entire temporal sequence be known while the statistical predictor

does. Two, the network does accurately predict portions of the pilot's head position in time

while the statistical predictor always lags. Three, the network can be trained in real-time

and updated as necessary to accommodate unexpected future events whereas the statistical

predictor can not.

4.6 Voice Data Reconstruction

For the task of voice data reconstruction, the recurrent network was required to learn

the difference between a fricative (noisy) and a voiced (non-noisy) portion of speech. The

recurrent network configuration consisted of 4 inputs, 1 sigmoidal output, and no hidden

units. The network was trained for 400 epochs on a 1500 vector-length data set. The

learning rate was initialized to 5.0. The data set for this application consisted of four

features computed from a variable width sample of speech. The first feature was the total

energy contained in the sample. The second feature was the number of zero-crossings that

occurred during the sample period divided by the sample window length. The third feature

was the number of slope changes divided by the sample window length. And the fourth

feature was the total energy below 500 hertz within the sample window. The desired output

was a classification based upon whether the input features described a fricative (class 1)

or voiced (class 0) portion of speech. The classification was assessed purely on human

discretion.

Figure 25 displays the results of the recurrent network after training for 400 epochs

through the 1500 vector-length data set. The decision accuracy of 98.4% was based upon

whether the network output was greater than 0.5 for a class I or less than 0.5 for a class 0.

The few classification errors the network made were for noisy regions that contain higher

49



than normal energy (such as the sound for the letter "k").

Voice Data Training Results
1.4 1 1 1

desired class output
1.2 network output ,

accuracy=98.4% decision threshold ----

I0

0 0.8

0.6

z 0.4

0.2

0 " - A....L "

0 50 100 150 200 250 300 350 400 450
TIME (arbitrary)

Figure 25. Voice data classification results after training on 400 epochs. The few clas-
sification errors the network made are for noisy regions that contain higher
than normal energy (such as the sound for the letter "k").

Following training, the network weights were saved and used in the reconstruction

program. Within the reconstruction program, the weights were used with the transmitted

signal to reconstruct the speech pattern, adding noise where needed based upon the net-

work's classification decision. Figure 26 illustrates how the network weights were used in

the reconstruction program to classify a given speech pattern. The fricative regions classi-

fied as "1" were noisy regions where noise was added to the signal during reconstruction.

In the voiced "0" regions, no noise was added to the signal during reconstruction. Using

this network, the reconstruction program was able to reproduce an intelligible voice signal

whereas the decisions made by the feedforward network previously used could not.

50



Recurrent Network Decisions Used in Voice Reconstruction Program

voice signal
network decision

0

-0.5 -

0 3000 6000 9000 12000 15000 18000
TIME (125us)

Figure 26. Recurrent network decisions made within the reconstruction program. Areas
classified as "1" are considered fricatives (noisy regions), and noise was added
to that portion of speech during reconstruction. No noise was added to the
voiced regions classified a "0".

51



4.7 Summary

The recurrent neural network was tested using several temporally encoded data

sets. From these test results, the network demonstrated the ability to learn the internal

state problem and the second order IIR lowpass Butterworth filter problem. Specifically

noted was the network's ability to learn both the temporal response and frequency domain

response of the Butterworth filter by training only on the filter's impulse response.

The recurrent network was also tested on the classic XOR problem. However, it

was discovered that the recurrent network did not learn this problem in the classic spatial

sense. Rather it learns the problem in a spatio-temporal decision space. There was found

no clear decision region which could be used to delineate the correct decisions from the

incorrect decisions, as shown by Figure 9.

Following testing, the recurrent network was applied to two problems: head position

tracking, and voice data reconstruction. The accuracy at which the network predicted the

pilot's head position showed the recurrent network's ability to predict trajectories and

motion as well as, or slightly better than, the best linear predictor. The application of the

network to the reconstruction of voice data showed the network's ability to make accurate

decisions based upon the learning of temporally encoded sequences. Thus, through both

of these applications, the recurrent network displayed a high degree of generalization.

Therefore, the extension of the recurrent neural network's application to a wide range of

differing problems would be a straight-forward process.

52



V Conclusions and Recommendations

This thesis effort has sought to encode the RTRL algorithm, test it, and use it to

predict the future value of a function based upon the function's history. This process,

called function prediction, is extremely important to many Air Force applications.

5.1 Conclusions

The RTRL algorithm has demonstrated the ability to learn several time dependent

functions. From the test results outlined in Chapter IV, the network demonstrated the

ability to learn the internal state problem, and the second order 11R lowpass Butterworth

filter problem. Also the recurrent network demonstrated the ability to temporally learn the

classic XOR problem.

However, in an exact sense, it could not learn the true spatial mapping of the XOR

problem because of the temporal information contained in the sequential data. This was

evidenced by the fact that no clear spatial decision region could be used to delineate the

correct decisions from the incorrect decisions, as Figure 9 illustrates.

The recurrent network was also applied to two problems: head position tracking,

and voice data reconstruction. The accuracy at which the network predicted the pilot's

head positions showed the recurrent network's ability to predict trajectories and motion.

The application of the network to tl reconstruction of voice data showed the network's

ability to learn temporally encoded sequences.

The recurrent network has demonstrated a high degree of accuracy as a function

prediction tool. In the Butterworth filter application, the network not only simulated the

response of the filter to various input signals, it did so predictively. In other words, the

output of the network was a prediction of the output of the filter for the next time step.

This prediction was based upon the current signal activation and the previous network

response. For the head position tracking problem, the recurrent network demonstrated a

53



high degree of accuracy in predicting spatial head position at either 2 or 5 time steps in the

future. The time step was arbitrary and was based on the sampling rate of the data being

analyzed.

5.2 Recommendations

A recommendation that may improve the rate of convergence of the network entails

the use of a network reduction scheme. One such method makes use of the Ruck saliency

metric (16, 17). This method examines the responsiveness of the network's output to its

input in order to rank the network's nodal usefulness. This way, the network can be pruned

down, reducing the number of interconnection weights and processing nodes. A direct

result of this reduction would be a great increase in computational speed and network

convergence.

Another recommendation would be to investigate a way to determine what the

recurrent neural network learned during the training process. It is known how the network

learns and how it performs when trained, but it is still not exactly known what the network

learns in order to make accurate decisions.

5.3 Future Research

Much more research is needed in the area of recurrent networks. Two specific

topics are brought to light by this thesis. One is the concept of the recurrent network's

capacity to remember. Does the network really remember the temporal nature of the task

it is presented? Does it forget at some future time? How does the logistic squashing

function affect the network's capacity to remember? The second topic of future research

is the spatio-temporal mapping of the recurrent network's decision region. What kind of

decision region does the recurrent network create in the process of making a decision? Do

the internal state variables play an important role in the decision process? Is this decision

region purely a temporal mapping, or does this mapping contain both spatial and temporal

information?

54



Appendix A. Software Development

Appendix B contains the source listing for the modified RTRL algorithm developed

at AFIT called "RECNET" (short for recurrent neural network). RECNET was written in

"ANSI C" and has been successfully compiled and run on all of the following computer

systems: Silicon Graphics 4D/GTX, Silicon Graphics Personal IRIS 4D, NeXT NeXTsta-

tion, and IBM/compatable "AT class" personal computers using Turbo C++. The main

program file is named "recnet.c".

A.1 File Parameters

RECNET requires two data files, called "parameters.dat" and "data.dat" (default).
"parameters.dat" is a data file which contains the following three numbers:

numepochs learning_rate random_number_seed

The "num-epochs" (integer) is the epoch length for a specific training run. The "learn-

ing.rate" (float) is the learning rate of the network. If the output nodes of the network are

defined as sigmoidal, the learning rate can be set to any value that works. If the output

nodes are defined as linear, the learning rate must be small (alpha < 0.5) for the network to

remain stable. The "random.number.seed" (integer) is the seed used to randomly generate

the weight matrix. The data file "data.dat" is the default name for the data file to be read

during training or testing. If a data filename is passed to RECNET at the command line,

RECNET will read that filename as the input data file. For example, the command

recnet mydatafile.dat

will execute RECNET using "mydatafile.dat" as the current input data file. To test a data

file, the command

recnet mytestfile.dat test

55



will execute RECNET using "mytestfile.dat" as the input test data file. The format of the

data file is as follows:

numinputs numoutputs numnodes numvectors

inl in2...numinputs desl des2...numoutputs (vectorl)

* .. . (vector2)

. . . .(vector3)

. . .. .(vector4)

. . . . .(vector5)

* (vector6)

numvectors

where "numinputs" (integer) is the number of external inputs, "numoutputs" (integer)

is the number of external outputs, "numnodes" (integer) is total number of processing

nodes (which includes the output nodes), "numvectors" (integer) is the total number of

input/desired-output vectors, "il in2..." (float) are the actual values to be read as inputs

(there should be 'numinputs' of these), and "desi des2..." (float) are the actual desired

output values (there should be 'numoutputs' of these). Each vector is considered a seperate

timed event.

A.2 Environment

RECNET dynamically configures itself using the data contained in the data file

header line. During initialization, memory space is allocated for all variables and all

inputs and desired outputs are read in before any computation begins. After initialization,

the network begins training on the data, dynamically adjusting the weights until either the

total error drops below 0.0005, or the total number of epochs have been reached.

RECNET will display different information depending on which mode of operation is

selected. During training, RECNET will output to the terminal screen various information.

First, it will show how it is configured by displaying the data file header line. Following

56



this, the epochwise total error is printed to show how the network is learning, or whether

or not it is learning. During testing, RECNET outputs the current configuration to the

termiiial screen. In addition, it displays the names of the three data files it creates during

the test run. These files are described in the next section.

A.3 C'lput

After network training is complete, several output data files are created. First, the

data file "weights.dat" is created. It contains a z(t) vector listing for the very last timed input

vector and a listing of the complete weight matrix, in row-column format, after training.

In addition, the files "desired.dat" and "netout.dat" are created, The file "desired.dat"

contains a listing of the desired output values, and the file "netout.dat" contains a listing

of the actual network output values corresponding to the appropriate desired output value.

These two files are separate to aid in plotting the data.

After testing, RECNET creates three data files. They are described as follows:

"testcheck.dat" contains a comparative listing of the computed network output and the

desired network output, "testdes.dat" contains a listing of the desired network output,

and "testout.dat" contains a listing of the computed netork output. Again, these files are

seperate to aid in plotting the data.

57



Appendix B. Recurrent Neural Network Source Code

This appendix contains a listing of the modified real-time recurrent learning algo-

rithm source code and its supporting functions. The files "nrutil.c" and "rani .c" were used

from the Numerical Recipies in C book (12).
A* definitions.h***************************

File containing function declarations and variable
declarations for the main program called recnet.c.

date: 30 May 91
written by: Randall L. Lindsey

float *vectorO;
float **matrixo;
float ***matrix3do;
float ranlI(;

FILE *ifp, *ofp;
int run=1;
char str[80], *datafile;
int nrows, ncols, i, j, k, 1, m, n;
int epochs, a, t;
int numinputs, num-outputs, num-nodes, numsvectors;
int seed, idum=l;
float alpha, J[2], sum, kron;
float *y, *s, *e, *yprime;
float **z, **d, **w, **delw;
float ***p, ***p-old, ***pitemp;
float sigmoid(float x);
void init-neto;
void train-neto;
void test-neto;
void read-datao;
void propagateo;
void compute-outputo;
void compute-erroro;
void updateo;
void reset-delw-so;
void reset-po;
void save-weightso;
void read-weightso;

58



void check-fileO;

char junk-response[256];

#define fskip.Jine(A) fgetsojunk..rsponse, 256, A)
#define skip~iine getsojunkiresponse)

#define rloopi(A) for(i=(A)- 1;i O;i- -)
#define rloopj(A) forOj=(A)-j O2:j--)
#define rloopk(A) for(k=(A)- I ;k :O;k-)
#define rloopl(A) for(1=(A)- 1;1 O;1- -)
#define rloopij(A,B) for(i=(A)- 1;i -O;i- -) forOj=(B)-I1 j Oj -- )

#define loopi(A) for(i=O;<A;i++)
#define loopj(A) forOj=Oj<Aj++)
#define loopk(A) for(k=-O-k<Ak++)
#define loopl(A) for(1=O;R<A;1++)
#define loopij(A,B) for(i=O;i<A;i++) for"-=0j<Bj++)

#define CREATE..FILE(A,B,C) if((A=fopen(B, "1w"1)) == NULL){\
printf(strcat(C,": can' t open for writing - %s. \n",),B); \

exit (- 1); 1
#define OPENYIELE(A,B,C) if((Afopen(B, "1r"1)) == NULL){\

printf(strcat(C,": can't open for reading - s\,)B;
exit (- 1); }

#define IABS(A) ((int)((-(A)<(A))?((A)):(-(A))))

A* RECNET.C*****************************

A recurrent neural network which follows the algorithm
proposed by Williams and Zipser in their paper "A Learning
Algorithm for Continually Running Fully Recurrent
Neural Networks", Neural Computation 1, 2 70-280 (1989).

date: 30 May 91
update: 15 Jul 91

59



written by: Randall L. Lindsey, GEO-91D

#include <stdio.h>
#include "macros. h"
#include <math.h>
#include "def init ions. h
#include <string.h>

void main(int argc, char *argv[]){
switch (argc) {
case 1:

datafile=" data. dat"; /* Default name of datafile. 4
check-fileO; A* Check to see if the datafile name exists. 4
init-netO; A, Initialize and define all network variables.

Allocate memory for all vectors and matricies
and set initially to zero. Randomly set the
weight matrix using the pseudo-random number
generator. 4

readdataO; /, Read data vector array and desired output. 4
train-neto; A, Propagate inputs and update weights based on

gradient descent. 4
break;

case 2:
datafile=argv[l]; A* User specified name of datafile. 4
check-fileO; A, Check to see if the datafile name exists. 4
init-netO; A* Initialize and define all network variables.

Allocate memory for all vectors and matricies
and set initially to zero. Randomly set the
weight matrix using the pseudo-random number
generator. 4

read-datao; /, Read data vector array and desired output. 4
train-neto; /, Propagate inputs, compute outputs, and

update weights based on gradient descent. 4
break;

case 3:
datafile=argv[1]; I, User specified name of datafile. 4
check-fileo; A, Check to see if the datafile name exists. .4
init-netO; A* Initialize and define all network variables.

Allocate memory for all vectors and matricies
and set initially to zero. Randomly set the
weight matrix using the pseudo-random number
generator. 4

test-neto; A, Propagate inputs and compute outputs. 4

60



break;

default:
printf("\nUsage: net [datafilename.dat] [testflag) \n\n");
break;}

}/* End MAINO of RECNETC 4

void train.netO 1* Written 10 Jun 91, RLL. 4{
I, Begin main loop portion 4

ofp=fopen(" error. trn", "w");
for(a=O;a<epochs;a++) {
J[O] = J[1;

J[i] =0.;
for(t=O;t<num-vectors;t++) {

propagateo; A* Computes the state of the net at time t.
Store previous outputs y[t-I as part of
the new input vector z[tJ[il. Sum all
z[][]*w[][] inputs into the activation
vector sit] for input into y[t]. 4

compute-error(; /* Computes the error at time t.
How far off are the outputs from the

desired values? Compute total error. 4

compute-outputo;/* Compute the output y(t+l)=fis(t). 4

update(; I, Computes del-w(t), and p(t+l). Backprop
error through net and perform gradient
descent to calculate the delta weights. 4

reset-delw..so; 1* Reset delta weights and sftj vectors
to zero for the next iteration. 4}

printf("%s % f\n","total error =",J[1]); I, Print total error.4
if ((a > 5) && (J[O]/J[1 < 0.95)) {
alpha = alpha/20;
printf("% f % f alpha = % f\n",J[O],J[],alpha);
}

61



if (J[1J < 0.0005) { A* If total error is less than a specific 4
save-weightso; A* fractional value (arbitrazy), then exit.4
printfQ'1 %d\n %a);
exit(0);

fprintf(ofp," % f\n",J[1]);

reset..po; A* Zero p-old1t][J matrix for next epoch. W

} * End main loop portion 4

fclose(ofp);
save-weightso; A* Save weights, input vector z, and desired

output to a data file for future use. 4

return;

A 1 end function train..netO 4

void test..net( A* Written 10 Jun 91, RLL. W

1* Begin main loop portion 4

reac-weightso; A* Read weight matrix and saved p states. IV
read-datao; /* Read data vector array and desired output. W

ofp~fopen(" error. tst 1, HIIt)
J[]=0.;

for(t=0O;t<numnvectors;t++){

propagateo; /* Store previous outputs y~t-lJ as part of
the new input vector zftlffJ. Sum all
zfltj*w[](J inputs into the activation
vector s~t) for input into yt. 4

compute-outputo; A* Compute the output y(t+l)=Ts(t)J. Y/

compute-erfro; 1* Computes the error at time t.
How far off are the outputs from the

desired values? Compute total error 4

reset-delw-sO; A* Reset delta weightsand sf] vectors to
zero for the next iteration. IV

fprintf(ofp," % f\n",J1J);

62



/ * End main loop porion 4

fclose(ofp);

ofp=fpen(,,t es tcheck. dat 1, "w");
loopi(num..vectors){
Ioopj(num-outputs)

fprintf(ofp,"1 % f ",z[i]o[+m]);
loopj(num-outputs)

fprintf(ofp," n

fcose(ofp);

ofp=fpen(testd s .dat", 1w11);
loopi(num-vectors)
loopj(num-outputs)

fblose(ofp);

ofp=fpen(t estout. .dat"1, "w1);
loopi(numsvectors)
loopj(num-outputs)

fprintf(ofp," % f \n" ,z~i1j+m]);
fclose(ofp);

printf(I 'testcheck.dat' contains test data. \n");
printf("'ltestout.dat' contains net output test data.\n");
printf("testdes.dat' contains desired output test data.\n");
return;

A 1 end function test-netO 4

float sigmoid(float x) A* Written 30 May 91, RLL. 'V

static float max-val=50.;

if (x > znax.val)
return 1.0;

if (x < -max.val)
return 0.0;

return I1/(I + exp(- x));

A 1 end sigmoid 'V

63



void init-net) A* Written 10 Jun 91, RLL. W

1* Read diata from the input file "parameters.dat" 4

ifp=fopen(parameters. .dat 11 "r"*);
fscanf(ifp," %d % f %d ",&epochs,&alpha,&seed);
fcose(ifp);

A* Read data from the input file data file (user specified) W

ifp~fopen(datafile, "r");
fscanf(ifp," %d %d %d",&numinputs,&num-outputs,&num..nodes);
fscanf(ifp, 1 % d ",&num-vectors);
printfQ' %d %d %d\ n" ,numinputs,num-outputs,num-aiodes);
fclose(ifp);

m = numinputs + 1; A* # of external inputs 4
nrows = n = num-nodes; A* # of rows for weight matrix 4
ncols = mn + nuim-nodes; A* # of cols for weight matrix4

1* Allocate memory for vectors and matrices 4

e=vector(O,nrows- 1); 1*error vector 4
y=vector(O,nrows- 1); 1*output vector 4
s=vector(O,nrows-1); 1*sum of weighted inputs 4
ypriine=vector(O,numnodes- 1); A* dy/dw 4
w=maftix(O,nrows- 1,O,ncols- 1); A* weight matrix 4
delw=matrix(O,nrows-1,O,ncols-1); 1*delta weightsy4
z=matrix(O,num-vectors,O,ncols- 1); 1*input vector array V
d=matrix(O,num-vectors,O,ncols- 1); 1*desired output array 4
p=matrix3d(O,nrows- 1,O,ncols -1,O,nrows- 1); 1* dy/dw 4
p-old=matrix3d(O,nrows- 1,O,ncols- 1,O,nrows- 1); 1* dy/dw 4

A* Initialize variables to zero V

J[O]=J[1J=O.O;
Ioopij(numsvectors,ncols)

zli][j] = 0.;
loopij(num-vectors,num-outputs)

d[i]U] = 0.;
loopi(nrows){

y[i] = s~i] = e(iJ = 0.;
loopj(ncols){

will[i = delw[iJU] =0.;

64



loopk(nrows)
p[ilijlikl = p-old~ilfj[k] = 0.;

1* Initialize weight matrix using psuedo-random numbers WV

idum, = -IABS(seed);
ranl(&idum);
loopi(nrows) I

Ioopj(ncols){
w[i][j] = 2*ranl(&idum)-l.0;
printfQ', % f ,,w[i]Uj]);

I
printf(" \n");

1* Initialize first input to 1 (non-external) WV

Ioopi(numsvectors)
zli][0] = 1.;

return;

void read-data) A* Written 10 Jun 91, RLL. 'V

1* Read data file external inputs 'V

ifp~fopen(datafile, "r");
fskip.Jine(ifp);
loopi(num..vectors){

loopj(num-inputs)
fscanf(ifp, 1 % f ",&z[i][U+I)

loopj(num-outputs)
fscanf(ifp,", % f ,,&d~i]U]);

fclose(ifp);
return;

void propagateo A Written 10 Jun 91, RLL. WV
1* Computes the state of the net at time t, and

initializes the z vector for time t. '

65



1* Set previous outputs ytkJ=y(t) as part of the next input zftJ[k+mJ. 'V

loopk(nrows)
z[t][k+m]= k]

1* Sum all inputs into each of the k nodes. 4

loopk(nrows)
loopi(ncols)

silk] += w[k](i] * zt[]

return;

void compute-output() A* Written 16 Jul 91, RLL. 'V
A* Computes the output at time (t41), ie y(t+l). 4

A* Process each of the k nodes as Sigmoidal functions with input st
unless LINEAR is defined, in which only output nodes are linear
functions of s[tJ and the remaining hidden nodes remain Sigmoidal.
The output computed is y[k) = y(t~l) = f(sffJ).

#ifdef LINEAR
loopk(num-outputs)

y[k] = sk];
loopk(nrows-num-outputs)

y[k+num-outputs] = sigmoid(s[k+num-outputs]);
#else

Ioopk(nrows)
y~k] =sigmoid(s[kI); A* Here, yj'kJ=y(tf-). 'V

#endif

return;
I

void computerefro( A Written 10 Jun 91, RLL. 4

A* Compute error at time t based on desired output values. Returns a
zero error for t=0O on first epoch. 'V

if ((t ==0) && (a == 0)) return;
else

66



loopk(num-outputs)

e[k] = d~t][k] - k]

1* Total error cumulated over each epoch. After each epoch, J =0. 4

loopk(num-outputs)
J[1] += 0.5 * e[lcI * 4k];

return;

void updateo A* Witten 10 Jun 91, RLL.
Modified 28 Jun 91, RLL. 4

1* compute change of weights at time t. delw is reset to zero at each
iteration (time step), and p-old is p(t). 4

loopij(nrows,ncols)
loopk(num-.outputs)

delw[i]oI] +-- alpha * e[k] * p-oldfi][j][k];

/* Update rules. Computes p(t+ 1). 4

#ifdef LINEAR
loopk(num-outputs)

yprime[k] = zt[]
Ioopk(nrows-num-outputs)

yprime~k+num-outputs] = y[k]*(1 .0-y~k]);
#else

Ioopk(nrows)
yprime[k] = y[k]*(1.O-y[k]); A* Uses y~kJ =y(t+ 1). 4

#endif
A m =nuinputs +1 4

Ioopi(nrows) A* nrows =num-nodes. 'V
loopj(ncols) A* ncols =num-nodes + 4
loopk(nrows) A 1 numinputs + 1 4

kron = 0.0; 1* Kronecker delta function.4
if (i==k) kron = 1.0;

sum = 0.;
Ioopl(num-nodes)

sum += w~kI[I+mI*p-oldiW[l]; 1* p-old = p(t). 4

p[i]LI][k] = yprime[k]*(sum+kron*z[t][j]); /* Uses z(t). 4

A 1[1[1fj' is now for time p(t+ 1). 4

67



1* Update weights. Computes weights for time w(t+1). V

loopij(nrows,ncols)
w[i][j] += delwijiW];

1* Save partial derivitives for next iteration (time t-I) and reset
p matrix by swapping the pointers of the old p matrix with the new
p matrix. 4

p-temp = p-old;
p-old = p; A* p-old is now p(t 1). 4
p = p-temp;

return;

void reset-delw..s( 1* WMitten 30 May 91, RLL. 4

A* Reset delta weights and input sum to zero for next calculation. 4

loopij(nrows,ncols)
delwfilU] = 0.;

loopi(nrows)
S~]=0.;

return;

void resetp() A Written 15 Jul 91, RLL. 4

A* Zero p-oldfJ(J] for next calculation. 4

Ioopij(nrows,ncols)
loopk(nrows)
p-oldfi]ljIIk] =0.;

Ioopi(nrows)
Y~]=0.;

return;

void save-weights() A* Witten 28 Jun 91, RLL- 4

FILE *afP;

68



ofp=fopen("weights .dat", a"wi);
1= num-vectors - 1;
loopj(ncols)

fprintf(ofp,"1 % f ",zli] [j);
fprintf(ofp, 1 \ n 1);
loopi(nrows) {

loopj(ncols)
fprintf(ofp,"1 % f ,,w~i] U]);

fprintf(ofp," n")

fclose(ofp);
afp=fopen("netout .dat"-, "ow");
loopi(num..vectors) {

loopj(num-outputs)
fprintf(ofp," % f ",4i](j+m]);

fprintf(ofp," n")
I
fclose(afp);
afp=fopen(" desired. dat",, f"we);
1oopi(num.vectors) {

loopj(num-outputs)
fprintf(ofp," % f ll,d[i][jJ);

fprintt(ofp,", \n")

fclose(afp);
return;

void read-weights) A* Written 28 Jun 91,RLL. 4(

ifp=fopen("weights .dat", "r"t);
i = 0;

Ioopj(ncols)
fscanf(ifp,", % f ",&z[i]U]);

Ioopi(nrows)
loopj(ncols)

fscanf(ifp,," % f n,&w~i] U]);
fclose(ifp);
return;

void check-file() A Witten 10 Jul 91, RLL. 4

FILE *afp;

afp = fpe ~ r '9;, 1

69



if(afp == NULL){
IAstrcpy(a file, " File not found ") ;4v
printfQ'\n%s %s\n",datafile,": File not found.");
exit(O);

I
else fclose(afp);
return;

1* NRUTIL.C**********************

Utilities which create vectors, matricies, and
3-D matrices.

#include "malloc.ho
#include <stdio.h>

void nrerror(error-text)
char error-text[];

void exitO;

fprintf(stder,"Nuierical Recipes run-time error... n;
fprintf(stderr," %s \n" ,error-text);
fprintf(stderr, H... .now exiting to system... n)
exit(1);

float *vector(nl,nh)
int nl,nh;

float *v;

v=(float *)malloc((unsigned) (nh-nl+l )*sizeof(float));
if (!v) nreffor("al location failure in vector) ;
return v-ni;

int *ivector(nl,nh)
int nl,nh;

int *v;

70



v=(int *)malloc((unsigned) (nh-nh I ),k-izeof(int));
if (!v) nreror(allocation failure in ivectoro( )
return v-ni;

double *dvector(nl,nh)
int nl,nh;

double *v;

v=(double *)rnalloc((unsigned) (nh-nl+1 )*sizeof(double));
if (!v) nreror(allocation f ailure in dvector(';
return v-ni,

float **matrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

int i;
float **m;

m=(float **) rnalloc((unsigned) (nrh-nrl+l)*sizeof(float*));
if (!m)nreror(alocation failure 1 in matrixo")
m -= nrl;

for(i=nrH<nrlri++){
m[iI(float *) malloc((unsigned) (nch-ncl+1 )*sizeof(float));
if(!m[i) nrerror(allocaticn f ailure 2 in matrix(")
m[iI -= ncl;

return m;

matdx3d() created by Randall Lindsey on 15 May 91 for
use in recnet.c

float ***matrix3d(nrl,nrh,ncl,nch,ndl,ndh)
jut nrl,nrh,ncl,nch,ndl,ndh;

intij;
float ***m;

m=(float ***) malloc((unsigned) (nrh-nrl+1 )*sizeof(float**));

71



if (!n) nrerrorQ',allocation failure 1 in matrix3do")
mn- nrl;

for(i=nrl;i~nrh;i++){
m~i]=(float **) malloc((unsigned) (nch-ncl+1 )*sizeof(float*));
if (!m[i) nreror( allocation failure 2 in rnatrix3dU")
m~i] -= ncl;
forOj=nclj:5nch-,j++) f

m[i]O[j=(float *) malloc((unsigned) (ndh-ndl+l1)*sizeof(float));
if (!mIiIj]nrerror(allocation failure 3 in matrix3do-1i);
mj~i][j] - ndl;

double **dmatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

int i;
double **mn;

M=(double **) malloc((unsigned) (nrh-nrl+1 )*sizeof(double*));
if (!mn)nreror(al locat ion f ai lure 1 in dmatrixO)
mn - nrl;

for(i=nrl;i~nrh;i++){
m[i]=(double *) malloc((unsigned) (nch-ncl+1 )*sizeof(double));
i nimi) nrerrorQallocation f ailure 2 in dmatrix(';
m[i] -ncl;

return mn;

int **imatrix(nrl,nrh,ncl,nch)
int nrl,nrh,ncl,nch;

int i,**m;

m=(int **)malioc((unsigned) (nrh-nrl+1)*sizeof(int*));
if (!mn)nrerror(allocation f ailure 1 in iratrix(;
in ,= nrl;

for(i=nrl;i~nrh;i++){
m[i]=(int *)malloc((unsigned) (nch-ncl+1 )*sizeof(int));
if (!mfi) nrerror(allocation f ailure 2 in irnatrix)";
m[iI -ncl;

72



return m;

Numerical Recipies pseudo-random number generator

#define MI 259200
#define IAl 7141
#define ICI 54773
#define RM1 (1.0/Mi)
#define M2 134456
#define IA2 8121
#define IC2 28411
#define RM2 (LOW1M)
#define M3 243000
#define 1AM 4561
#define IC3 51349

extern float ran I1(idum)
int *idum;

static long ixi ,ix2,ix3;
static float r[98];
float temp;
static int iff=0;
intj;
void nrerroro;

if (*idum < 0 11 iff == 0){
iff=1;
ixl=(IC1-(*idum)) % MI;
ixl=(IA1*ixl+IC1) % MI;
ix2=ixl % M2;
ixl=(IA1*ixl+IC1) % MI;
ix3=ixl % M3;
for Oj=1 j 97;j++){

ixl=(IAI*ixl+ICI) % MI;
ix2=(1A2*ix2+1C2) % M2;
ro]=(ixl +ix2*RM2)*RMI;

I
*idum=1;

73



ixl=(TAI*ixl+ICI) % MI;
ix2=(1A2*ix2+1C2) % M2;
ix3=(1A3*ix3+1C3) % M3;
j=1 + ((97*ix3)1M3);
if 0 > 97 11 j < 1) nrerror("RAN1: This cannot happen. 11);
temp=r[i];
rrj]=(ixl+ix2*RM2)*RM1;
return temp;

}udfM
#undef MlI

#undef ICI
#undef RM1
#undef M2
#undef IA2
#undef IC2
#undef RM2
#undef M3
#undef IA3
#undef IC3

The following additional listing is a supporting data file required for the recurrent

network program to work properly.

1* PARAMETERS.DAT*******************************************,'

300 4.0 987654321

74



Appendix C. Source Code for Creation of Data

This appendix contains a listing of the source code which generated the data for

testing the modified recurrent neural network.

A* MAKE-DATA.C ***********************~

#include <stdio.h>
#include "'macros .h"l
#include 'Irani. c",

FILE *ofp, *ifp;

void main(int argc, char *argv[])

float classjunc[2] [2048],x[2] (2048],aO,al ,a2,bO,bl;
mnt idum=1 ,ij,bubba;

switch (argc){
case 1:
case 2:
printf(\n%s\n\n", "Usage: make-data filename.dat num-nodes [bin]")
exit(0);
break;

case 3:
aO=-0.0676; al=0.1352; a2--0.0676;
bO=1.1422; bl=-O.4124;
bubba--atoi(argv[2J);
ofp=fopen(argv[1], "w-1);
idum = -IABS(737496732);
ranl1(&idum);
fprintf(ofp," %d %d %d %d\n" ,1,1,bubba,100);
x(1[0]=x[1[1=O.O;
loopi( 100)

x[0] [i] = 2.0*r-. I(&idum)- 1.0;
loopi(98)

x[1][i+2]=aO*x[0][i+2]+al *x[0][i+1]+a2*x[0](iI+bO*x[lI][i+1 ]+bl *x[1 ][iI;
loopi( 100)

fprintf(ofp,"1% f % f \n,,,x[0][i],x[l][i]);
fclose(ofp);

75



break;

case 4:
bubba--atoi(argv[2]);
ofp=fopen(argv[l], "w);
idum = -IABS(97475298);
ranl1(&idum);
fprintf(ofp," %d %d %d %dII,1,1,bubba,2048);
junklll][O]=O.;
loopi(2048)

junklOl [i]=ranl (&idum);
loopi(2048)

junk[I] (i]=junk[O][(i];
loopi(2048)

fprintf(ofp," \n% f % f ',junk[O][i],junk[l][i]);
fclose(ofp);
break;

A* XOR1DATA.C *********************'

#include <stdio.h>
#include "'macrosho
#include "1rani.c

FILE *ofp, *ifp;

void main(int argc, char *argv[])

float classjunk[2li 1024],seed;
int idum=1 ,i,ji,bubba;

switch (argc){
case 1:
case 2:
case 3:
printf( \n%s \n\n %"Usage: make_data filename.dat num-nodes seed

(bin] '9);
exit(O);
break;

case 4:

76



bubba--atoi(argv[2]);
ofp=fopen(argv[1iI, "w");
idum = -IABS(seed);
ranl(&idum);
fprintf(ofp, %d %d %d %d 11,2,1 ,bubba, 1024);
loopi(1024){

loopj(2) I
junkUl [i]=ranl(&idum);
if (junkU][i]>0.5) junkU][i]=1.0;
else junkU][i]=0.0;

if (i < 2) class=1.0;
else I

if (ounk[0][i-2]>O.5) && (junk(1][i-21>0.5)) class=O.0;
if ((junk[0i[i-2]:! 0.5) && (junk(1] [i-21>0.5)) class;1 .0;
if ((junk[0)i-2]>0.5) && (junk[11[i-2]1 0.5)) class=1.0;
if ((junk[0]i-2]1 0.5) && (junk[1][i-2] O0.5)) class=0.0;

fprintf(ofp," \n% f %f % f ",junk[][i],junk[l][i],class);

Mcose(ofp);
break;

case 5:
bubba--atoi(argv[2]);
ofp=fopen(argv[1], "w");
idum = -IABS(seed);
ranl(&idum);
fprintf(ofp,' %d %d %d %d" ,2,1,bubba,1024);
loopi(1024) f

loopj(2)
junkUl [i] =ranl1(&idum);

if (i < 2) class=1.0;
else I

if ((junk[0][i-2]>0.5) && (junk[1][i-2]>0.5)) class=0.0;
if ((junk[0] [i-2]: 0.5) && (junk~l]I[i-2]>0.5)) class=1 .0;
if ((junk[0] [i-2]>0.5) && (junk 1] [i-2] 0.5)) class= 1.0;
if ((junk[0][i-21 50.5) && (junk(1][i-2] 50.5)) class=0.0;

fprintf(ofp,--\ n% f % f % f ",junk[0] [i],junk[1 ](i],class);

fcose(ofp);
break;

77



Appendix D. Utility Source Code

This appendix contains a listing of the utilities source code. These programs were

used to make the data better suited to the neural network environment.

/** STAT-NORM.C**********************************************

Performs statistical normalization on filename.dat and
creates filename.dat.sn as its output.

#include <stdio.h>

#include <math.h>

#define INPUTS 75 /, max number of features 4

/** begin Main Program *,V

void main (argc, argv)
int argc;
char *argv[];{

I,=== local variables
I,---------==-============*4

FILE *fopeno;
FILE *input, *fopeno;
char infile[50];
FILE *output;
char outfile[50];
float value, trash;
float deviation[INPUTS], average[INPUTS];
int i, j, inputs, outputs, ivalue;
int countl, count2, count, waste, temp;

/, ---- - -
/*=== did user specify an input file =-=4

if(argc 6 2) {
printf("\n\nUsage -> stat-norm <filename>\n\n");

78



A*=--= exit after pointing out the error ==='4
exit (1000);

* - ---------

I==user did specify an input file
-- - - - - - - - -- - --- - - - - - -

strcpy (infile, argv[l]); A* use inputted name as base V

*-------------- --- --------------

/==Open Input File

printf("\nopening Input File: %s\n\n,infie);

if (!(input = fopen(infile, 11rb))

printfQ\nCan't open input file: %s\n\n1,infie);
exit (2000);

redtehae}nomto
1*-- -------- ----- ----- -----------

fscanf (input, "1%d %d %d %d\n"1, &countl, &outputs, &inputs, &count);

if (countl < 0 11 count2 < 0 11 inputs < 0 11outputs < 0)
I

printf ("One of the header inputs is negative\n\n");
exit (3000);

1
printf ("There are %d training vectors \n ,count);
printf ("There are %d test vectors \n.%count);
printf ("There are %d inputs \ninputs);
printf ("There are %d outputs \n\n outputs);

1* count = count) + coiint2;.'

/==initialize things

for (i =0; i < inputs; i++)

179



average[i] = deviation[i] =0.0;

1*--- -- --- - ---- - - - - ------

/==loop until all data has been read in ==

printf ("Reading the Data\n\n'l);

for (i = 0; i < count; i++)

/*fscanf (input, "%d", &trash);V A read line counter 4

for a = 0;j < inputs; j++)

fscanf (input, 11% f ", &value); 1* read float values W

averageoj] += value;

A* forG(=Oj<outputs-l;jH-)

fscanf (input, "%f ", & value);

/*fscanf (input, "%f\n\n ", & value); 4

Hcose (input);

/==calculate the averages =--
A* --------- ------------------ - -

printf ("Calculating Averages \n\n 1);

for (0 = 0; i < inputs; i++)
I

average[i] /= (float)count;
I

/==Re-open the input file =__

printf ("Re-Opening Input File: %s\n\n", infile);

80



if (!(input = fopen(infile, 11rb"
I

printf(II\nCan' t re-open input file: %s\n\nInfile);
exit (2000);

A
/==throw away the header information this time ==--4

fscanf (input, 11%d %d %d %d\n 1, &waste, &waste, &waste, &waste);

/* - - - - -
/==loop until all data has been read in ===-4

printf ("Reading the Data\n\n");

for (i = 0; i < count; i++)

/*fscanf (input, Nd ", &trash);4 A* read line counter 4

for Q(= 0; j < inputs; j++)

fscanf (input, 11% f "1, &value); A* read float values 4

value - averageo]; A* subtract off the average 4
value *= value; A* square the result 4

deviationoj] += value; A* hang onto it until all done 4

1* for (j=O;j< outputs-1;j++)

fscanf (input, "%7f ", & value);

IAfscanf (input, "%AVn\n ", &value);4

fcose, (input);

/==calculate the standard deviation -4

printf ("Calculating Standard Deviations \n\n"1);

81



for (i =0; i < inputs; i++)

deviation[i] /= count - I;
deviation[i] = (float)sqrt((double)deviation[i]);

I==make output-file name

sprintf (outfile, "1% s . sn 1, argv[1]);

-- - - - - - - -- --*- - - - -

I*~=Open Output File

printf ("Opening Output File: %s n \ n", outfile);

if (!(output = fopen(outfile, "1wb))

Printf("\nCan't open output file: %s\n\n,outfie);
exit (2000);

-----}- ----
/==Re-open the input file
1-------------------------

printf ("Re-Opening Input File (last time): % s\ n\ n"1,infile);

if (!(input = fopen(infile, "1rb",)))
I

printf("\nCan't re-open input file: %s\n\n,infie);
exit (2000);

}

I==read and save header =_

fscanf (input, "%d %d %d %d\ n ,,&countl1, &outputs, &inputs, &count);
fprintf (output, 11%d %d %d %d\n"1, count 1, outputs, inputs, count);

A - - - - - - ---*- - -
I==read data in, modify it, save it back out ==

1* ---------------------

82



prinf"Reading, Modifying and Re-Saving the Data\n\n"e);

for (i =0; i < count; i++)

I*fscanf (input, "%d ",&ivalue);4 A* read line counter 4
IAfprintf (output, "%d ',ivalue);4 A* save line counter 'V

for j =0; j < inputs; j++)

fscanf (input, '1 % f ,, &value); 1* read float value 'V

value - averageUj]; A* modify the value 4
value 1= deviationo];

fprintf (output, 1 % f %,value); A* save modified value 4

fprintf (output," \n)

1* for (I= Oj <outputs-l~j++)

fscanf (input, "%Yf ", &value);
fprintf (output, "%f ", value);

I*fscanf (input, '%d\nI\n ", &ivalue);
Ifpintf (output, "%d\n\n", ivalue);4

Hcose (input);
Hcose (output);

/==we're done =4

printf (" Finished. \n\n");

Fast Fourier Transform Programr

#include <stdio.h>

83



#include <math.h>

#define Ioopi(A) for(i=O0;i<A);i++)
#define loopj(A) fo.r j=j<(A)j++)
#define loopij(A,B) for (i=-O; i<(A); i++)\
for 0j=0; j<(B); j++);

#define SQ(A) (A*A)
#define PI 3.1415926

mn,,in(int argc,char *argv[])

FILE *fin, *fout;
.0oat *output,*input,*truncout;
float norm;
float *v'ectorO;
I* void doflipO;4~
void foumno;
1* void truncateO;4
/* void *free..vectorO;4
char name[30];
int ij, nn[1], ndimn, isign, new-.order, order, image-size;
lif(argc 54 3) {

printf("H !! The command line should be ! :\n\n f f t-trunc
infile outfile \n\n-);

exit(O);

pri;ntf("!!! Input the input images SIZE and ORDER: )

scanif(" %d%d N ,&image.size,&order);

/******************set up dynamic allocation************ ****4'

input = vector(,2*imagesize*imagesize- 1);
output = vector(O,imagesize*imagesize- 1);

~'***************Set Up Files************'

if ((fin=fopen(argv[1],"H r")) = NULL){
printf(III can't open the input file");
exit(- 1);

if ((fc,,,,,7--fopen(argv[2],"w")) ==NULL)[

84



printf("II can't open the output file,,);
exit(- 1);

I**************Read File**********'

loopi(2*image.size*imagesize-1) 1*initialize array to zero WV
input~i] = 0.0;

loopi(imagesize*imagesize- 1) I*read data in the fourn format 'V
fscanf(fin, 11 % f \ n 11, &input[i*2]); A* see numerical recipes in c 'V

fcose(fin); 1*close input file 'V

A*** Initialization parameters for FFT ****'

nI401=mage-size; A*size of input LAW fourno 'V
nn[f]=image-.size;

ndim=1; A* one dim FFT 'V
/*ndim=2; V A* two dim FFT 'V
isign=1; f* FFT 4

foumn(input- 1 ,nn- 1 ,ndim,isign);

/***********RFnd Fourier Mignitude *****'

j=0;
for(i=0;i<(2*imagesize*image-size- 1); i+=2){

outputU]=sqrt((double)SQ(input(iI)+(double)SQ(input[i+1]));

norm--output[0]; A~I d.c component used for normalization *4V

Printf(" % 4. Of \n ",norm);

I***** normalize and wite output of FF'Fin argv[2J file **V

loopi(image-size*image-size){
output[i]=output[i]/norm;
fprintffout, --% 1 . 4 f \ n 11, output~i]);

fcose(fout);

85



I***** dofiip****************************** '

/,doflip(output,image-size); 4 A* converts fourn format to human format 4
/,printf("%4.4f \n ",output[8l28]);/

I******* truncate **********************************************
truncate takes ft(output) of size(image-size) and truncates the
FFT to order specified plus d.c. the array is returned in
truncout, the argv[2] is used as a header when truncate writes
the output in netfft.dat

if(order # 0){
new-order = 2*order+l;
trunc-out = vector(O,image-size*irage-size- 1);
truncate(output,image-size,order,trunc-out, argv[2]);
free-vector(trunc-out,O,image-size*image.size- 1);

freevector(input,0,2,image-size~image-size- 1);
free-vector(output,O,image-sizeimage-size- 1);

/** ***********************************************************

************************ *************** ********* **************

NAME: foun.c
DESCRIPTION: Numerical Recipies multi dimensional FFT routine.
Requires a complex column vector as follows:
I real a(l)/
I complex a(l)/
/ real a(2)/
/ complex a(2)/
/ etc/
SUBROUTINES CALLED:
WRITTEN B Y Numerical Recipies in C

#include <math.h>

#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

void fourn(data,nn,ndim,isign)
float data[];

86



int nn[],ndim,isign;

int ii ,i2,i3,i2revi3revipl ,ip2,ip3,ifpl ,ifp2;
int ibit,idim,kl ,k2,n,nprevnrem,ntot;
float tempitempr;
double thetawi,wpi,wprwrwtemp;

ntot=1;
for (idim-1 ;idim~ndim;idim++)

ntot *= nn[idim];
nprev=1;
for (idim--ndim;idim > 1;idim---

n--nn[idim];
nrem=ntotl(n*nprev);
ipl=nprev < 1;
ip2=ipl *n;
ip3=ip2*nrem;
i2rev=1;
for (i2=1;i2:5ip2;i2+=ipl){

if (i2 < i2rev){
for (il=i2;il i2+ipl1-2;il+=2){

for (i3=il ;i3<ip3;i3+=ip2){
i3rev=i2rev+i3-i2;
SWAP(data~i3],data(i3revl);
SWAP(datati3+l1,data.[i3rev+l));

ibit~ip2 > 1;
while (ibit ! ipI && i2rev > ibit){

i2rev -ibit;
ibit >=1;

i2rev += ibit;

ifpl=ipl;
while (ifpl < ip2){

ifp2=ifpl « 1;
theta=isign*6.283 1853071 79591(ifp2/ip 1);
wtemp~sin(0.5 *theta);
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1I.0;
wi=0.0;
for (i3=1;i3:5ifp1;i3+=ip1){

for (iI~i3;il i3+ip1 -2;il +=2){
for (i2=il;i2<ip3;i2+=ifp2) {

87



kl=i2;
k2=kl+ifpl;
tempr--wr*dataik2] -wi*data[k2+ 1];
tempi=wr*data[k2+1]+wi*data[k2];
data[k21=datalilll -tempr;
data[k2+1]=data[kl+l] -tempi;
data[kl] += tempr;
data[k 141 ] += tempi;

wr(wep=wr)*wpr-wi*wpi+wr;
wi=wi*wpr+wternp*wpi+wi;

ifpl=ifp2;

nprev *= n;

#undef SWAP

I*******COSMatrix.c creates the Cosine matrix.********

Written By: Jim Goble
Date: 1 July, 1991
Version: 1.0

#include <math.h>
#include <stdio.h>
#define PI 3.14159265
main()

FILE *Cfile,*ofp; A* My storage file pointer 4(
double temp,NN;-
double coso,sqrto;
int m, n, M, N, X, Y;-
printf("!! Input the desired number of rows:");
scanf( % d, WN;
printf(s" \ n 1);
/*printf("!!! Input the desired number of cycles in Y.');
scan f(C'd", &Y);
printf('\n ")pV'

88



printf("!! Input the desired number of cycles in X: ");
scanf(l" %d, &X);
printf(" \n")

M=N;
NN =N;

M = M - 1; A* increment variables 4(
N=N- 1;

A* Open Cfie for writing. Note there is no error checking! 4

Mfie = fopen("11co s . da t""w)

1* Comp ute the CMatrix 'V

for (m=0; m< M; ++m){
temp = cos((2*X*m*PI)INN);
fprintf(Cfile, 1 % -8. 7 f n n", temp);
A 1 end of m for loop 'V

fcose(Cfile);
A 1 end of program 'V

89



Appendix E. Statistical Prediction Algorithm and Source Code

This appendix contains an overview of the statistical prediction algorithm used to

compare with the recurrent network prediction. Following the description of the algorithm

is a listing of the C source code which empliments the statistical prediction algorithm.

E.1 Statistical Prediction Algorithm

Given an ergotic signal described by the function x(t), the future value of x(t) at

time t2 is given by

"o ,)2) = Elxt2I + v(Xt,)(x(t 1 ) - E[x,,]) (14)=%) =E[,., + va,-(x,,)

where the expectation values (means) E[xt,] and E[xt,] are g, ven by

1 N
E[xt,] = E[xtj = - ,x(n) (15)

and the variance var(xj) is given by

var(xt,) = E[x 2] - E2[xt,]) (16)

and the covariance cov(xt,, xj.) is given by

cov(xg,,x 2,) = E[xxt2] - E2[xt'j) (17)

For the variance, the expectation value (mean) of x2 is given by

=O X2(n) (18)

90



and for the covariance, E[xt,, xtj] is given by

E[xtj.,2] = x(n)x(n + k)(19)
1

where k is some constant time in the future.

The measure of performance is the mean squared error between the predicted value

and the actual value at some time in the future. This error is given by

error = e = E[(x'(t 2) - x(t 2))2]  (20)

E.2 Source Code Listing

The following source code listing is a C emplimentation of the statistical prediction

algorithm previously outlined. It requires two serarate files to be present in the same

directory: "sp-defs.h", a declarations file for the main program, and "param..sp.dat", a

parameter file for declaring variable arrays. The functions used from "NRUTIL.C" are

listed in Appendix B.

1* SP.C ********************************************************

Statistical Prediction Software. This program performs
the best linear prediction for any ergotic function. The
default input datafile name is "data.drt" but you can use
any filename desired as long as it is passed to SP at the
command line. The results printed to the default
display are self explanitory

Required input files: sp-defs.h, and params.sp.dat
Files created: statresults.dat, stat-des.dat

stat-out.dat, and stat-erro.dat

date: 17 Oct 91

written by: Randall L. Lindsey, GEO-91D

#include <stdio.h>
#include "macros.h"
include <math.h>

91



#include "sp__.def s .
#include <string.h>

void main(int argc, char *argv[])

switch (argc){
case 1:
datafile= ,data. .dat"1;
check-fileO;
initializeo;
read-dataO;
MEANO;
MEAN-SQO;
VARO;
COVO;
compute..outputo;
compute-erroro;
prinLresultso;

break;

case 2:
datafile=argv[1];
check-fileo;
initializeO;
read-dataO;
MEANO;
MEAN-SQO;
VARO;
COVO;
compute-outputo;
compute-effro;
print-meultso;
break;

case 3:
default:
printfQ\nUsage: sp (datafilename.dat] \n\nm);
break;

AI End MAINO of SP.C W

void initialize()

A* Read data from the input file "param-sp.dat" '

92



printf(1%s ,Init.. .'91;
ifp=fopen(" param-spda ,1r,)
fscanf(ifp," %d % f %d %d" ,&epochs,&alpha,&seed,&look-alead);
fcose(ifp);

A* Read data from the input file data file (user specified) 4

ifp~fopen(datafile, , r,);
fscanf(ifp, 1 %d %d %d ",&num-inputs,&num-outputs,&num-nodes);
fscanf(ifp, 1 %d ",&num-vectors);
fcloseifp);

m = numinputs + 1; A* # of external inputs 4
nrows = n = num..nodes; A* # of rows for weight matrix 4
ncols = mn + num-aiodes; A* # of cols for weight matrix 'V

A* Allocate memory for v.xtors and matrices 4

e=vector(0,nrows- 1); A* error vector 4
z=vector(0,num-vectors+Iook-ahead); A* input v~ector array 4
y=vector(0,num-vectors); A* output vector array .4
d=vector(0,num-vectors+look-ahead); A* desired output array 4

1* Initialize variables to zero 4

J[0]=J[ 11=0.0;
Ioopi(num..vectors)

e[i] = y~i] = d[i] = z[i] = 0.;

return;

void read-data()

ifp~fopen(datafile, "Ir");
fskip-lineiff);
loopi(num-vectors+look-ahead)

fscanf(ifp," %f % f Hzi]&~i

fclose(ifp);
return;

93



void MBAN()

float X=-O.;
loopi(num-vectors)

X +--z~i];
mean = I .O/(float)num-vectors * X
printf("%s = % f\n %"Mean ",mean);
return;

void MEAN-SQ()

float X=-O.;
loopi(num-vectors)

X +-- z[iI*zfiI;
mean-.sq = 1.O(float)numsvectors * X
printfe"%s = %f\nm,"Mean Sq",meansq);
return;

void VARO

var = mean-sq - ineanim;
printf("%s = %f\nm,HVarH,v&);
return;

void COVO

float X=-O.;
loopi(numsve.,tors)

X += z[i]*z[i+Iookahead];
coy = (l.O/(float)num-vectors * X) - (meanmean);
printf("%s = %f\n',wCov,cov);
return;

void compute-output()

94



loopi(num-vectors)
y[i] = mean+(cov/var)*(z[i]-mean);

return;

void compute-erfro

float X=-O.;
Ioopi(num-vectors){

e[i] z[i+look-ahead] - i]
X +-- eli] * i]

effor =1.O/(float)num-vectors * X
Printf("%s = %f\nR,"IError",ero)
return;

void pnint..xesults()

printf("%s","Printing results ... )

ofp =fopen(",stat-results. dat 1, "w");
Ioopi(num-vectors)

fcose(ofp);
ofp =fopen"stat-out. dat", "w");
loopi(num..vectors)

fprintf(ofp," % f \n" ,y[i]);
fclose(ofp);
ofp =fopen( stat- des. dat N, "w");
Ioopi(num-.vectors)

fprintf(ofp," % f \ n",d[i]);
fclose(ofp);
ofp =fopen"stat-error. dat 0, w");
Ioopi(num..vectors)

frifop" % f \n" e[i]);
fclose(ofp);
printf("%s\n","Done. )

void cbeck-file() A Writen 10 Jul 91, RLL. 'V

95



FILE *afp;

afp = fopen(datafile," r")
if(afp = NULL){

IAstrpy(alile, "File not found'9p'/
printf("\n%s %s\n,datafile,N: File not found.")
exit(O);

else fclose(afp);
return;

File containing function declarations and variable
declarations for the main program called sp.c.

date: 17 Oct 91

witten by: Randall L. Lindsey

float *vectoro;

FILE *ifp, *ofp, *ifpl, *ofpl;
int run=l;
char str[80], *datafile;
int nrows, ncols, i, j, k,. 1, m, n;
int epochs, a, b, tL look-.ahead;
int num-inputs, num-outputs, num-nodes, numsvectors, seed;
float alpha, aiphal, J[2], sum, mean, mean-.sq, var, coy, error;
float *e, *z, *)f, *d;
void MEANO;
void MEAN-SQ0;
void VARO;
void COVO;
void initializeQ;
void reackdatao;
void compute..erfro;
void print-meultso;
void check-jileO;
void compute-outputo;



200 3.0 153

97



Bibliography

1. Almeida, L. B. "A Learning Rule for Asynchronous Perceptrons With Feedback
in a Combinatorial Environment." In Proceedings of the IEEE First International
Conference on Neural Networks, II, pages 609-618, June 1987.

2. Fang, Yan and Terrence J. Sejnowski. "Faster Learning for Dynamic Recurrent
Backpropagation," Neural Computation, 2:270-273 (1990).

3. Gaskill, Jack D. Linear Systems, Fourier Transforms, and Optics. New York: John
Wiley and Sons, 1978.

4. Hecht-Nielsen, Robert. Neurocomputing. Reading, Massachusetts: Addison-Wesley
Publishing Co., January 1991.

5. Hopfield, J. J. "Neural Networks as Physical Systems with Emergent Collective
Computational Abilities." In Proceedings of the National Academy of Sciences, 79,
pages 2554-2558, 1982.

6. Lapedes, A. and R. Farber. "A Self-Optimizing, Nonsymmetrical Neural Net for
Content Addressable Memory and Pattern Recognition," Physica D, 22, pages 247-
259 (1986).

7. Le, Capt Phung D. Model-Based 3-D Recognition System Using Gabor Features
and Neural Networks. MS thesis, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1990.

8. Mish, Fredrick C., editor. Webster's Ninth New Collegiate Dictionary (First digital
Edition). Boston: Merriam-Webster Inc., and NeXT Computer, Inc., 1988.

9. Pearlmutter, B. A. "Learning State Space Trajectories In Recurrent Neural Net-
works," Neural Computation, 1:263-269 (1989).

10. Pineda, Fernando J. "Generalization of Back-Propagation to Recurrent Neural Net-
works," Physical Review Letters, 59-19, pages 2229-2232 (November 1987).

11. Pineda, Fernando J. "Recurrent Backpropagation and the Dynamical Approach to
Adaptive Neural Computation," Neural Computation, 1:161-172 (1989).

12. Press, William H. and others. Numerical Recipies in C. Cambridge: The MIT Press,
1991.

13. Rogers, Steven K. and Matthew Kabrisky. An Introduction to Biological andArtificial
Neural Networks for Pattern Recognition. Washington: SPIE Optical Engineering
Press, 1991.

14. Rohwer, Richard and Bruce Forrest. "Training Time-Dependence in Neural Net-
works." In Proceedings of the IEEE First International Conference on Neural Net-
works, II, pages 701-708, June 1987.

98



15. Rosenblatt, F. Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Washington: Spartan Books, 1959.

16. Ruck, Dennis W. Characterization of Multilayer Perceptrons and their Application
to Multisensor Automatic Target Detection. PhD dissertation, Air Force Institute of
Technology, Wright-Patterson AFB, OH, December 1990 (AFIT/DS/ENG/90-2).

17. Ruck, Dennis W., et al. "Feature Selection Using a Multilayer Perceptron," The
Journal of Neural Network Computing, 2(2) (Fall 1990).

18. Rumelhart, David E., et al. Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Volume 1. Cambridge: The MIT Press, 1988.

19. Stright, James R. A Neural Network Implementation of Chaotic ime Series Pre-
diction. MS thesis, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1988.

20. Switzer, Capt Shane R. Frequency Domain Speech Coding. MS thesis, School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1991.

21. Williams, Ronald J. and Jing Peng. "An Efficient Gradient-Based Algorithm for On-
line Training of Recurrent Network Trajectories," Neural computation, 2:490-501
(1990).

22. Williams, Ronald J. and David Zipser. "Experimental Analysis of the Real-time
Recurrent Learning Algorithm," Connection Science, 1(1):87-111 (1989).

23. Williams, Ronald J. and David Zipser. "A Learning Algorithm for Continually
Running Fully Recurrent Neural Networks," Neural Computation, 1:270-280 (1989).

24. Zipser, David. "A Subgrouping Strategy that Reduces Complexity and Speeds Up
Learning in Recurrent Networks," Neural Computation, 1:552-558 (1990).

99


